67 research outputs found

    LpL^p-Spectral theory of locally symmetric spaces with QQ-rank one

    Full text link
    We study the LpL^p-spectrum of the Laplace-Beltrami operator on certain complete locally symmetric spaces M=Γ\XM=\Gamma\backslash X with finite volume and arithmetic fundamental group Γ\Gamma whose universal covering XX is a symmetric space of non-compact type. We also show, how the obtained results for locally symmetric spaces can be generalized to manifolds with cusps of rank one

    The finite-temperature chiral transition in QCD with adjoint fermions

    Full text link
    We study the nature of the finite-temperature chiral transition in QCD with N_f light quarks in the adjoint representation (aQCD). Renormalization-group arguments show that the transition can be continuous if a stable fixed point exists in the renormalization-group flow of the corresponding three-dimensional Phi^4 theory with a complex 2N_f x 2N_f symmetric matrix field and symmetry-breaking pattern SU(2N_f)->SO(2N_f). This issue is investigated by exploiting two three-dimensional perturbative approaches, the massless minimal-subtraction scheme without epsilon expansion and a massive scheme in which correlation functions are renormalized at zero momentum. We compute the renormalization-group functions in the two schemes to five and six loops respectively, and determine their large-order behavior. The analyses of the series show the presence of a stable three-dimensional fixed point characterized by the symmetry-breaking pattern SU(4)->SO(4). This fixed point does not appear in an epsilon-expansion analysis and therefore does not exist close to four dimensions. The finite-temperature chiral transition in two-flavor aQCD can therefore be continuous; in this case its critical behavior is determined by this new SU(4)/SO(4) universality class. One-flavor aQCD may show a more complex phase diagram with two phase transitions. One of them, if continuous, should belong to the O(3) vector universality class.Comment: 36 page

    Diversity of archaea and niche preferences among putative ammonia-oxidizing Nitrososphaeria dominating across European arable soils

    Get PDF
    Archaeal communities in arable soils are dominated by Nitrososphaeria, a class within Thaumarchaeota comprising all known ammonia-oxidizing archaea (AOA). AOA are key players in the nitrogen cycle and defining their niche specialization can help predicting effects of environmental change on these communities. However, hierarchical effects of environmental filters on AOA and the delineation of niche preferences of nitrososphaerial lineages remain poorly understood. We used phylogenetic information at fine scale and machine learning approaches to identify climatic, edaphic and geomorphological drivers of Nitrososphaeria and other archaea along a 3000 km European gradient. Only limited insights into the ecology of the low-abundant archaeal classes could be inferred, but our analyses underlined the multifactorial nature of niche differentiation within Nitrososphaeria. Mean annual temperature, C:N ratio and pH were the best predictors of their diversity, evenness and distribution. Thresholds in the predictions could be defined for C:N ratio and cation exchange capacity. Furthermore, multiple, independent and recent specializations to soil pH were detected in the Nitrososphaeria phylogeny. The coexistence of widespread ecophysiological differences between closely related soil Nitrososphaeria highlights that their ecology is best studied at fine phylogenetic scale.The Digging Deeper project was funded through the 2015–2016 BiodivERsA call, with national funding from the Swiss National Science Foundation (grant 31BD30-172466), the Deutsche Forschungsgemeinschaft (grant 317895346), the Swedish Research Council Formas (grant 2016-0194), the Spanish Ministerio de Economía y Competitividad (grant PCIN-2016-028) and the Agence Nationale de la Recherche (grant ANR-16-EBI3-0004-01). The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication. Sequencing was performed by the SNP&SEQ Technology Platform in Uppsala. The facility is part of the National Genomics Infrastructure (NGI) Sweden and Science for Life Laboratory. The SNP&SEQ Platform is also supported by the Swedish Research Council and the Knut and Alice Wallenberg Foundation

    On the nature of the finite-temperature transition in QCD

    Full text link
    We discuss the nature of the finite-temperature transition in QCD with N_f massless flavors. Universality arguments show that a continuous (second-order) transition must be related to a 3-D universality class characterized by a complex N_f X N_f matrix order parameter and by the symmetry-breaking pattern [SU(N_f)_L X SU(N_f)_R]/Z(N_f)_V -> SU(N_f)_V/Z(N_f)_V, or [U(N_f)_L X U(N_f)_R]/U(1)_V -> U(N_f)_V/U(1)_V if the U(1)_A symmetry is effectively restored at T_c. The existence of any of these universality classes requires the presence of a stable fixed point in the corresponding 3-D Phi^4 theory with the expected symmetry-breaking pattern. Otherwise, the transition is of first order. In order to search for stable fixed points in these Phi^4 theories, we exploit a 3-D perturbative approach in which physical quantities are expanded in powers of appropriate renormalized quartic couplings. We compute the corresponding Callan-Symanzik beta-functions to six loops. We also determine the large-order behavior to further constrain the analysis. No stable fixed point is found, except for N_f=2, corresponding to the symmetry-breaking pattern [SU(2)_L X SU(2)_R]/Z(2)_V -> SU(2)_V/Z(2)_V equivalent to O(4) -> O(3). Our results confirm and put on a firmer ground earlier analyses performed close to four dimensions, based on first-order calculations in the framework of the epsilon=4-d expansion. These results indicate that the finite-temperature phase transition in QCD is of first order for N_f>2. A continuous transition is allowed only for N_f=2. But, since the theory with symmetry-breaking pattern [U(2)_L X U(2)_R]/U(1)_V -> U(2)_V/U(1)_V does not have stable fixed points, the transition can be continuous only if the effective breaking of the U(1)_A symmetry is sufficiently large.Comment: 30 pages, 3 figs, minor correction

    Agricultural management and pesticide use reduce the functioning of beneficial plant symbionts

    Get PDF
    Phosphorus (P) acquisition is key for plant growth. Arbuscular mycorrhizal fungi (AMF) help plants acquire P from soil. Understanding which factors drive AMF-supported nutrient uptake is essential to develop more sustainable agroecosystems. Here we collected soils from 150 cereal fields and 60 non-cropped grassland sites across a 3,000 km trans-European gradient. In a greenhouse experiment, we tested the ability of AMF in these soils to forage for the radioisotope 33P from a hyphal compartment. AMF communities in grassland soils were much more efficient in acquiring 33P and transferred 64% more 33P to plants compared with AMF in cropland soils. Fungicide application best explained hyphal 33P transfer in cropland soils. The use of fungicides and subsequent decline in AMF richness in croplands reduced 33P uptake by 43%. Our results suggest that land-use intensity and fungicide use are major deterrents to the functioning and natural nutrient uptake capacity of AMF in agroecosystems.The Digging Deeper project was funded through the 2015-2016 BiodivERsA COFUND call for research proposals, with the national funders Swiss National Science Foundation (grant 31BD30-172466), Deutsche Forschungsgemeinschaft (317895346), Swedish Research Council Formas (contract 2016-0194), Ministerio de Economía y Competitividad (Digging_Deeper, Ref. PCIN-2016-028) and Agence Nationale de la Recherche (ANR, France; grant ANR-16-EBI3-0004-01)

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    A closer look at the functions behind ecosystem multifunctionality: A review

    Get PDF
    1. In recent years there has been an upsurge of studies on ecosystem multifunctionality (EMF), or the ability of ecosystems to simultaneously provide multiple functions and/or services. The concept of EMF itself, the analytical approaches used to calculate it, and its implications depending on the spatial scale and field of study have been discussed in detail. However, to date there has been little dialogue concerning the basis of EMF studies: what should or should not be considered appropriate measures for ecosystem functions. 2. To begin this discussion, we performed an in‐depth review of EMF studies across four major terrestrial ecosystems (agroecosystems, drylands, forests and grasslands) by analysing 82 studies, which together have assessed 775 ecosystem functions from a variety of field and greenhouse experiments across the globe. 3. The number of ecosystem functions analysed varied from two to 82 per study and we found large differences in the distribution of functions across ecosystem types and ecosystem service categories. Furthermore, there was little explanation of why certain variables were included in the EMF calculation or how they relate to ecosystem functioning. 4. Synthesis. Based on the literature analysis, it is clear that there is no general agreement regarding which measurements should or should not be considered functions in the field of ecology. To address this issue, we propose a general guideline for determining and measuring appropriate functions.G.G., A.E., L.P., F.T.M. and M.G.A.v.d.H. are supported through the 2015–2016 BiodivERsA COFUND call for research proposals (Digging Deeper Project), with the national funders Swiss National Science Foundation (grant 31BD30-172466), Ministerio de Economía y Competitividad (Digging_Deeper, Ref. PCIN-2016-028) and Agence Nationale de la Recherche (ANR, France; grant ANR-16-EBI3-0004-01). S.B., C.H. and M.G.A.v.d.H are funded by the Swiss National Science Foundation (grant 166079). E.M.O., R.W. and M.G.A.v.d.H. are supported by the Mercator Foundation Switzerland and ETHZ World Food System Center. G.G., A.E., E.M.O., C.H., S.B., R.W. and M.G.A.v.d.H. are funded by Agroscope. G.G., and L.P. are supported by the French National Institute for Agricultural Research (INRA). F.T.M. is supported by the European Research Council [ERC Grant Agreement 647038 (BIODESERT)]
    • 

    corecore