3,541 research outputs found
Phase 2 and 3 wind tunnel tests of the J-97 powered, external augmentor V/STOL model
Static and forward speed tests were made in a 40 multiplied by 80 foot wind tunnel of a large-scale, ejector-powered V/STOL aircraft model. Modifications were made to the model following earlier tests primarily to improve longitudinal acceleration capability during transition from hovering to wingborne flight. A rearward deflection of the fuselage augmentor thrust vector was shown to be beneficial in this regard. Other augmentor modifications were tested, notably the removal of both endplates, which improved acceleration performance at the higher transition speeds. The model tests again demonstrated minimal interference of the fuselage augmentor on aerodynamic lift. A flapped canard surface also showed negligible influence on the performance of the wing and of the fuselage augmentor
Phase 1 wind tunnel tests of the J-97 powered, external augmentor V/STOL model
Test results are presented for a large scale, external augmentor V/STOL model in a 40 ft by 80 ft wind tunnel. The model was powered by a GE J97 engine and featured longitudinal ejectors alongside and external to the fuselage together with an augmentor flap on the low aspect ratio, double-delta wing. A static thrust augmentation ratio of 1.60 was measured for the fuselage augmentor at a nozzle pressure ratio of 3.0 and a nozzle exhaust gas temperature of 700 C. At forward speed the model showed a strong positive lift interference due to the augmentor flap, and a marked absence of negative lift interference due to the fuselage augmentor jet system. The nose-up moment of the fuselage augmentor inlet flow was approximately cancelled by a 60 deg deflection of the augmentor flap. An assessment of the thrust and drag components to allow the prediction of transition performance of aircraft designs based on the present conceptual model was made. Lateral tests showed strong but well ordered effects of power
Phase 4 static tests of the J-97 powered, external augmentor V/STOL model at the NASA, Ames Research Center, November 1983
A large-scale, ejector-lift V/STOL Model, powered by a J-97 engine, was tested at the NASA Ames Research Center Outdoor Aerodynamics Research Facility. The model incorporated the external augmentor concept developed by DHC. Since the first test at Ames in 1979, the fuselage augmentor nozzle array has been redesigned with a larger pitch and notched nozzles instead of plain slot nozzles. Thrust augmentation of the ejector as measured at Ames Research Center was lower than that measured in the DHC laboratory. It is believed that this difference is due to the high temperature of the primary jet flow as compared to the DHC blown-down rig. An ejector-lift/vectored thrust configuration was also included in the recent tests. This is an arrangement where the fuselage augmentor is shortened in the chordwise direction and the extra thrust is generated with a vectorable, ventral nozzle. In free air the shortened fuselage augmentor produced the same augmentation as the long augmentor. In ground proximity, at a height of 27 in, and with zero pitch angle, a negative ground effect was measured equal to 6.5 percent of the free-air lift
Static tests of the J97 powered, external augmenter V/STOL wind tunnel model
Results of the static testing (zero forward speed) of the J97-powered, external augmentor, large scale, V/STOL model are discussed. With a ground clearance of 7.5 feet, believed to have put the model essentially out of ground effect, a gross thrust augmentation ratio of 1.60 at nozzle pressure ratio (NPR) = 3.0 was measured for the fuselage augmentor. A similar figure was apparent for the wing augmentor. An overall ratio of model thrust to bare engine thrust of 1.52 was determined at NPR = 3.0. The structural integrity of the model was well demonstrated and duct pressure losses were small
Phase 2 and 3 wind tunnel tests of the J-97 powered, external augmentor V/STOL model
Modifications were made to the model to improve longitudinal acceleration capability during transition from hovering to wing borne flight. A rearward deflection of the fuselage augmentor thrust vector is shown to be beneficial in this regard. Other agmentor modifications were tested, notably the removal of both endplates, which improved acceleration performance at the higher transition speeds. The model tests again demonstrated minimal interference of the fuselage augmentor on aerodynamic lift. A flapped canard surface also shows negligible influence on the performance of the wing and of the fuselage augmentor
Optical nonlinearity enhancement of graded metallic films
The effective linear and third-order nonlinear susceptibility of graded
metallic films with weak nonlinearity have been investigated. Due to the simple
geometry, we were able to derive exactly the local field inside the graded
structures having a Drude dielectric gradation profile. We calculated the
effective linear dielectric constant and third-order nonlinear susceptibility.
We investigated the surface plasmon resonant effect on the optical absorption,
optical nonlinearity enhancement, and figure of merit of graded metallic films.
It is found that the presence of gradation in metallic films yields a broad
resonant plasmon band in the optical region, resulting in a large enhancement
of the optical nonlinearity and hence a large figure of merit. We suggest
experiments be done to check our theoretical predictions, because graded
metallic films can be fabricated more easily than graded particles.Comment: 11 pages, 2 eps figures, submitted to Applied Physics Letter
Parametrisation of the orographic enhancement of precipitation and deposition in a long-term, long-range transport model
International audienceOrographic enhancement of wet deposition arising from the 'seeder-feeder' effect is, by necessity, highly parametrised in long-range transport models of acid deposition that are long-term (i.e. annual average) and spatially resolved at tens of kilometres. Here, we describe a mechanistic approach to the incorporation of these mechanisms into such a model. The model formulation required the following: precipitation rate by direction and quantification of the fractions that are orographic and non-orographic; treatment of the fast oxidation of sulfur dioxide in clouds; the directionality of the seeder-feeder process; and a quantitative basis for increasing wet deposition factors to account for the seeder-feeder process. The directionality of non-orographic precipitation was determined from meteorological data at 47 sites across the UK. Orographic precipitation varies on a much finer scale than can be interpolated from measurements, and thus a modelling approach was adopted. The directionality of the seeder-feeder effect was taken from measurements. The enhancement factor of the orographic component of precipitation, assumed to represent feeder-rain, was determined from a review of measurements. Fast oxidation of sulfur dioxide is an observed phenomenon in cap-cloud, but limited in duration. An adjustment was made to the sulfur dioxide oxidation rate in the model in locations where cap-cloud was assumed to be present. The results from the model were compared with UK deposition budgets and enhanced wet deposition maps. The revised parametrisation underestimated the UK wet deposition budgets of oxidised N and S, but spatial patterns of deposition were improved for much of the UK. It was concluded that this was a satisfactory outcome given the constraints of the statistical approach of weighting of deposition at receptors utilising straight line trajectories. The sensitivity of the model to directional constraints of seeder-feeder enhancement was tested and it was concluded that a fairly narrow constraint resulted in similar estimations to a broader one, and the broader constraint was thus adopted as frontal conditions which result in the process arrive from a fairly broad band of directions. When enhancement was allowed to occur from all directions, UK wet deposition of oxidised N and S was increased by 10%. The sensitivity to the enhancement factor on wet deposition was tested and found to be relatively robust. An increase in the enhancement factor from 2 to 6 resulted in increases in UK wet deposition of oxidised N and S of 9 and 6%, respectively.Key words: Atmospheric composition and structure (pollution ? urban and regional) ? Meteorology and atmospheric dynamics (precipitation
Ultrasonic studies of the magnetic phase transition in MnSi
Measurements of the sound velocities in a single crystal of MnSi were
performed in the temperature range 4-150 K. Elastic constants, controlling
propagation of longitudinal waves reveal significant softening at a temperature
of about 29.6 K and small discontinuities at 28.8 K, which corresponds to
the magnetic phase transition in MnSi. In contrast the shear elastic moduli do
not show any softening at all, reacting only to the small volume deformation
caused by the magneto-volume effect. The current ultrasonic study exposes an
important fact that the magnetic phase transition in MnSi, occurring at 28.8 K,
is just a minor feature of the global transformation marked by the rounded
maxima or minima of heat capacity, thermal expansion coefficient, sound
velocities and absorption, and the temperature derivative of resistivity.Comment: 4 pages, 4 figure
Optical nonlinearity enhancement of graded metal-dielectric composite films
We have derived the local electric field inside graded metal-dielectric
composite films with weak nonlinearity analytically, which further yields the
effective linear dielectric constant and third-order nonlinear susceptibility
of the graded structures. As a result, the composition-dependent gradation can
produce a broad resonant plasmon band in the optical region, resulting in a
large enhancement of the optical nonlinearity and hence a large figure of
merit.Comment: 11 pages, 2 figures. To be published in Europhysics Letter
- …