31 research outputs found

    Beauville surfaces and finite simple groups

    Full text link
    A Beauville surface is a rigid complex surface of the form (C1 x C2)/G, where C1 and C2 are non-singular, projective, higher genus curves, and G is a finite group acting freely on the product. Bauer, Catanese, and Grunewald conjectured that every finite simple group G, with the exception of A5, gives rise to such a surface. We prove that this is so for almost all finite simple groups (i.e., with at most finitely many exceptions). The proof makes use of the structure theory of finite simple groups, probability theory, and character estimates.Comment: 20 page

    Beauville surfaces, moduli spaces and finite groups

    Full text link
    In this paper we give the asymptotic growth of the number of connected components of the moduli space of surfaces of general type corresponding to certain families of Beauville surfaces with group either \PSL(2,p), or an alternating group, or a symmetric group or an abelian group. We moreover extend these results to regular surfaces isogenous to a higher product of curves.Comment: 27 pages. The article arXiv 0910.5402v2 was divided into two parts. This is the second half of the original paper, and it contains the subsections concerning the moduli spac

    Commutator maps, measure preservation, and T-systems

    Full text link
    Let G be a finite simple group. We show that the commutator map a:G×G→Ga : G \times G \to G is almost equidistributed as the order of G goes to infinity. This somewhat surprising result has many applications. It shows that for a subset X of G we have a−1(X)/∣G∣2=∣X∣/∣G∣+o(1)a^{-1}(X)/|G|^2 = |X|/|G| + o(1), namely aa is almost measure preserving. From this we deduce that almost all elements g∈Gg \in G can be expressed as commutators g=[x,y]g = [x,y] where x,y generate G. This enables us to solve some open problems regarding T-systems and the Product Replacement Algorithm (PRA) graph. We show that the number of T-systems in G with two generators tends to infinity as the order of G goes to infinity. This settles a conjecture of Guralnick and Pak. A similar result follows for the number of connected components of the PRA graph of G with two generators. Some of our results apply for more general finite groups, and more general word maps. Our methods are based on representation theory, combining classical character theory with recent results on character degrees and values in finite simple groups. In particular the so called Witten zeta function plays a key role in the proofs.Comment: 28 pages. This article was submitted to the Transactions of the American Mathematical Society on 21 February 2007 and accepted on 24 June 200

    New Beauville surfaces and finite simple groups

    Get PDF
    In this paper we construct new Beauville surfaces with group either \PSL(2,p^e), or belonging to some other families of finite simple groups of Lie type of low Lie rank, or an alternating group, or a symmetric group, proving a conjecture of Bauer, Catanese and Grunewald. The proofs rely on probabilistic group theoretical results of Liebeck and Shalev, on classical results of Macbeath and on recent results of Marion.Comment: v4: 18 pages. Final version, to appear in Manuscripta Mat

    On the Surjectivity of Engel Words on PSL(2,q)

    Full text link
    We investigate the surjectivity of the word map defined by the n-th Engel word on the groups PSL(2,q) and SL(2,q). For SL(2,q), we show that this map is surjective onto the subset SL(2,q)\{-id} provided that q>Q(n) is sufficiently large. Moreover, we give an estimate for Q(n). We also present examples demonstrating that this does not hold for all q. We conclude that the n-th Engel word map is surjective for the groups PSL(2,q) when q>Q(n). By using the computer, we sharpen this result and show that for any n<5, the corresponding map is surjective for all the groups PSL(2,q). This provides evidence for a conjecture of Shalev regarding Engel words in finite simple groups. In addition, we show that the n-th Engel word map is almost measure preserving for the family of groups PSL(2,q), with q odd, answering another question of Shalev. Our techniques are based on the method developed by Bandman, Grunewald and Kunyavskii for verbal dynamical systems in the group SL(2,q).Comment: v2: 25 pages, minor changes, accepted to the Journal of Groups, Geometry and Dynamic

    Beauville Surfaces, Moduli Spaces and Finite Groups

    Get PDF
    In this article we give the asymptotic growth of the number of connected components of the moduli space of surfaces of general type corresponding to certain families of Beauville surfaces with group either PSL(2, p), or an alternating group, or a symmetric group or an abelian group. We moreover extend these results to regular surfaces isogenous to a higher product of curves. \ua9 2014 Copyright Taylor and Francis Group, LLC
    corecore