In this paper we construct new Beauville surfaces with group either
\PSL(2,p^e), or belonging to some other families of finite simple groups of
Lie type of low Lie rank, or an alternating group, or a symmetric group,
proving a conjecture of Bauer, Catanese and Grunewald. The proofs rely on
probabilistic group theoretical results of Liebeck and Shalev, on classical
results of Macbeath and on recent results of Marion.Comment: v4: 18 pages. Final version, to appear in Manuscripta Mat