1,351 research outputs found
The history of mass assembly of faint red galaxies in 28 galaxy clusters since z=1.3
We measure the relative evolution of the number of bright and faint (as faint
as 0.05 L*) red galaxies in a sample of 28 clusters, of which 16 are at 0.50<=
z<=1.27, all observed through a pair of filters bracketing the 4000 Angstrom
break rest-frame. The abundance of red galaxies, relative to bright ones, is
constant over all the studied redshift range, 0<z<1.3, and rules out a
differential evolution between bright and faint red galaxies as large as
claimed in some past works. Faint red galaxies are largely assembled and in
place at z=1.3 and their deficit does not depend on cluster mass, parametrized
by velocity dispersion or X-ray luminosity. Our analysis, with respect to
previous one, samples a wider redshift range, minimizes systematics and put a
more attention to statistical issues, keeping at the same time a large number
of clusters.Comment: MNRAS, 386, 1045. Half a single sentence (in sec 4.4) change
The VIMOS Ultra Deep Survey. Luminosity and stellar mass dependence of galaxy clustering at z~3
We present the study of the dependence of galaxy clustering on luminosity and
stellar mass in the redshift range 2z3.5 using 3236 galaxies with robust
spectroscopic redshifts from the VIMOS Ultra Deep Survey (VUDS). We measure the
two-point real-space correlation function for four volume-limited
stellar mass and four luminosity, M absolute magnitude selected,
sub-samples. We find that the scale dependent clustering amplitude
significantly increases with increasing luminosity and stellar mass indicating
a strong galaxy clustering dependence on these properties. This corresponds to
a strong relative bias between these two sub-samples of b/b=0.43.
Fitting a 5-parameter HOD model we find that the most luminous and massive
galaxies occupy the most massive dark matter haloes with
M = 10 h M. Similar to the
trends observed at lower redshift, the minimum halo mass M depends on
the luminosity and stellar mass of galaxies and grows from M
=10 hM to M=10 hM
from the faintest to the brightest among our galaxy sample, respectively. We
find the difference between these halo masses to be much more pronounced than
is observed for local galaxies of similar properties. Moreover, at z~3, we
observe that the masses at which a halo hosts, on average, one satellite and
one central galaxy is M4M over all luminosity ranges,
significantly lower than observed at z~0 indicating that the halo satellite
occupation increases with redshift. The luminosity and stellar mass dependence
is also reflected in the measurements of the large scale galaxy bias, which we
model as b(L)=1.92+25.36(L/L). We conclude our study
with measurements of the stellar-to-halo mass ratio (SHMR).Comment: 20 pages, 11 figures, A&A in press, v2. revised discussion in sec.
5.5, changed Fig. 4 and Fig. 11, added reference
The VIMOS-VLT Deep Survey: Dependence of galaxy clustering on stellar mass
We have investigated the dependence of galaxy clustering on their stellar
mass at z~1, using the data from the VIMOS-VLT Deep Survey (VVDS). We have
measured the projected two-point correlation function of galaxies, wp(rp) for a
set of stellar mass selected samples at an effective redshift =0.85. We have
control and quantify all effects on galaxy clustering due to the incompleteness
of our low mass samples. We find that more massive galaxies are more clustered.
When compared to similar results at z~0.1 in the SDSS, we observed no evolution
of the projected correlation function for massive galaxies. These objects
present a stronger linear bias at z~1 with respect to low mass galaxies. As
expected, massive objects at high redshift are found in the highest pics of the
dark matter density field.Comment: 4 pages, 2 figures, 43rd Rencontres de Moriond - March 15-22, 2008 -
La Thuile (Val d'Aosta, Italy
Deep near-infrared luminosity function of a cluster of galaxies at z=0.3
The deep near-infrared luminosity function of AC118, a cluster of galaxies at
z=0.3, is presented. AC118 is a bimodal cluster, as evidenced both by our
near-infrared images of lensed galaxies, by public X-ray Rosat images and by
the spatial distribution of bright galaxies. Taking advantage of the extension
and depth of our data, which sample an almost unexplored region in the depth
vs. observed area diagram, we derive the luminosity function (LF), down to the
dwarf regime (M*+5), computed in several cluster portions. The overall LF,
computed on a 2.66 Mpc2 areas (H_0=50 km/s/Mpc), has an intermediate slope
(alpha=-1.2). However, the LF parameters depend on the surveyed cluster region:
the central concentration has 2.6^{+5.1}_{-1.7} times more bright galaxies and
5.3^{+7.2}_{-2.3} times less dwarfs per typical galaxy than the outer region,
which includes galaxies at an average projected distance of ~580 kpc (errors
are quoted at the 99.9 % confidence level). The LF in the secondary AC118 clump
is intermediate between the central and outer one. In other words, the
near-infrared AC118 LF steepens going from high to low density regions. At an
average clustercentric distance of ~580 kpc, the AC118 LF is statistically
indistinguishable from the LF of field galaxies at similar redshift, thus
suggesting that the hostile cluster environment plays a minor role in shaping
the LF at large clustercentric distances, while it strongly affects the LF at
higher galaxy density.Comment: ApJ, in press. The whole paper with all high resolution images is
available at http://www.na.astro.it/~andreon/listapub.htm
The extended epoch of galaxy formation: age dating of ~3600 galaxies with 2<z<6.5 in the VIMOS Ultra-Deep Survey
We aim at improving constraints on the epoch of galaxy formation by measuring
the ages of 3597 galaxies with spectroscopic redshifts 2<z<6.5 in the VIMOS
Ultra Deep Survey (VUDS). We derive ages and other physical parameters from the
simultaneous fitting with the GOSSIP+ software of observed UV rest-frame
spectra and photometric data from the u-band up to 4.5 microns using composite
stellar population models. We conclude from extensive simulations that at z>2
the joint analysis of spectroscopy and photometry combined with restricted age
possibilities when taking into account the age of the Universe substantially
reduces systematic uncertainties and degeneracies in the age derivation. We
find galaxy ages ranging from very young with a few tens of million years to
substantially evolved with ages up to ~1.5-2 Gyr. The formation redshifts z_f
derived from the measured ages indicate that galaxies may have started forming
stars as early as z_f~15. We produce the formation redshift function (FzF), the
number of galaxies per unit volume formed at a redshift z_f, and compare the
FzF in increasing redshift bins finding a remarkably constant 'universal' FzF.
The FzF is parametrized with (1+z)^\zeta, with \zeta~0.58+/-0.06, indicating a
smooth 2 dex increase from z~15 to z~2. Remarkably this observed increase is of
the same order as the observed rise in the star formation rate density (SFRD).
The ratio of the SFRD with the FzF gives an average SFR per galaxy of
~7-17Msun/yr at z~4-6, in agreement with the measured SFR for galaxies at these
redshifts. From the smooth rise in the FzF we infer that the period of galaxy
formation extends from the highest possible redshifts that we can probe at z~15
down to redshifts z~2. This indicates that galaxy formation is a continuous
process over cosmic time, with a higher number of galaxies forming at the peak
in SFRD at z~2 than at earlier epochs. (Abridged)Comment: Submitted to A&A, 24 page
The Luminosity Function of Low-Redshift Abell Galaxy Clusters
We present the results from a survey of 57 low-redshift Abell galaxy clusters
to study the radial dependence of the luminosity function (LF). The dynamical
radius of each cluster, r200, was estimated from the photometric measurement of
cluster richness, Bgc. The shape of the LFs are found to correlate with radius
such that the faint-end slope, alpha, is generally steeper on the cluster
outskirts. The sum of two Schechter functions provides a more adequate fit to
the composite LFs than a single Schechter function. LFs based on the selection
of red and blue galaxies are bimodal in appearance. The red LFs are generally
flat for -22 < M_Rc < -18, with a radius-dependent steepening of alpha for M_Rc
> -18. The blue LFs contain a larger contribution from faint galaxies than the
red LFs. The blue LFs have a rising faint-end component (alpha ~ -1.7) for M_Rc
> -21, with a weaker dependence on radius than the red LFs. The dispersion of
M* was determined to be 0.31 mag, which is comparable to the median measurement
uncertainty of 0.38 mag. This suggests that the bright-end of the LF is
universal in shape at the 0.3 mag level. We find that M* is not correlated with
cluster richness when using a common dynamical radius. Also, we find that M* is
weakly correlated with BM-type such that later BM-type clusters have a brighter
M*. A correlation between M* and radius was found for the red and blue galaxies
such that M* fades towards the cluster center.Comment: Accepted for publication in ApJ, 16 pages, 4 tables, 24 figure
- …
