673 research outputs found

    Progettare|proiettare integrazione urbana e riqualificazione edilizia del peep di corticella

    Get PDF
    L’oggetto di questa tesi è un intervento di rigenerazione, riqualificazione ed adeguamento di un comparto residenziale di circa 22 ettari a Corticella, zona del quartiere Navile, pianificato tramite il PEEP di Bologna del 1963 e realizzato tra gli anni 70 e 80 del secolo scorso. L'area si trova nella periferia nord di Bologna ai limiti con la campagna e comprende 34 fabbricati, di cui 27 residenziali. L'evoluzione economico sociale degli ultimi decenni ha causato l'insorgenza di diverse criticità dell'area, tra cui: scarsa efficienza energetica degli edifici con elevati costi di esercizio; inadeguatezza sismica degli edifici; bassi livelli di comfort abitativo; scarsa varietà dei tagli degli alloggi; scarsa qualità degli spazi pubblici e di relazione; mancanza di connessioni a livello urbano (sia in termini di continuità morfologica che di viabilità). L'obiettivo che si pone la tesi è quello di adeguare l'area alle nuove esigenze, in modo da proiettarla avanti nel tempo e renderla una zona vivibile oggi e in futuro, con un progetto che tenga conto della fattibilità dell'intervento e delle caratteristiche e delle risorse degli Enti e dei proprietari privati coinvolti nella gestione dell’area. Per ottenere questi risultati, il progetto ha riorganizzato i collegamenti urbani, che oggi rendono l'area una zona emarginata, e ha previsto la riqualificazione funzionale e prestazionale degli edifici, adottando due diverse ipotesi di progetto. Per quanto riguarda la situazione urbana, si è previsto di inserire nuovi elementi per migliorare la viabilità, in particolare nuovi percorsi ciclopedonali ed uno shared space che rimette in comunicazione l'area con il centro storico di Corticella. Per la riqualificazione degli edifici sono stati selezionati due edifici campione, rappresentativi delle situazioni e tipologie più ricorrenti nell’area, che sono stati affrontati con due approcci diversi. Dell’edificio che presenta le criticità più acute, si è valutata non conveniente una riqualificazione pesante e si è quindi previsto un intervento minimo di miglioramento dell’efficienza energetica e della distribuzione interna. Per il secondo edificio invece è stato progettato l’aggiornamento del taglio degli alloggi,l’adeguamento delle prestazioni energetiche fino a raggiungere la classe energetica A(originariamente classe G), il miglioramento delle capacità antisismiche e del comfort luminoso. Gli alloggi di standard decisamente superiore a quello attuale, la riconfigurazione dello spazio di pertinenza degli edifici come shared space, e la realizzazione di nuovi collegamenti urbani migliorano l’appetibilità e il valore immobiliare degli edifici, ma anche le condizioni ambientali e l’abitabilità dell’intera area di intervento

    Transient Effects of Snow Cover Duration on Primary Growth and Leaf Traits in a Tundra Shrub

    Get PDF
    With the recent climate warming, tundra ecotones are facing a progressive acceleration of spring snowpack melting and extension of the growing season, with evident consequences to vegetation. Along with summer temperature, winter precipitation has been recently recognised as a crucial factor for tundra shrub growth and physiology. However, gaps of knowledge still exist on long-living plant responses to different snowpack duration, especially on how intra-specific and year-to-year variability together with multiple functional trait adjustments could influence the long-term responses. To fill this gap, we conducted a 3 years snow manipulation experiment above the Alpine treeline on the typical tundra species Juniperus communis, the conifer with the widest distributional range in the north emisphere. We tested shoot elongation, leaf area, stomatal density, leaf dry weight and leaf non-structural carbohydrate content of plants subjected to anticipated, natural and postponed snowpack duration. Anticipated snowpack melting enhanced new shoot elongation and increased stomatal density. However, plants under prolonged snow cover seemed to compensate for the shorter growing period, likely increasing carbon allocation to growth. In fact, these latter showed larger needles and low starch content at the beginning of the growing season. Variability between treatments slightly decreased over time, suggesting a progressive acclimation of juniper to new conditions. In the context of future warming scenarios, our results support the hypothesis of shrub biomass increase within the tundra biome. Yet, the picture is still far from being complete and further research should focus on transient and fading effects of changing conditions in the long term

    Epidemiology of Musculoskeletal Injuries in Adult Athletes: A Scoping Review

    Get PDF
    Background and Objectives: Sport-related musculoskeletal injuries (MSK-Is) are a common health issue in athletes that can lead to reduced performance. The aim of this scoping review was to synthetize available evidence on injury incidence rates (IIRs), types, and sites that affect the musculoskeletal (MSK) system of adult athletes. Materials and Methods: We performed a scoping review on the Pubmed database limiting our search to 33 Olympic sports. Results: We identified a total of 1022 papers, and of these 162 were examined in full for the purpose of this review. Archery was the sport with the highest risk of injuries to the upper extremities, marathons for the lower extremities, and triathlon and weightlifting for the body bust. In the majority of the sports examined, muscle/tendon strain and ligament sprain were the most common MSK-Is diagnoses, while athletics, karate, and football were the sports with the highest IIRs, depending on the methods used for their calculations. Conclusions: Our scoping review highlighted the general lack and dishomogeneity in the collection of data on MSK-Is in athletes

    PET/CT Imaging in Mouse Models of Myocardial Ischemia

    Get PDF
    Different species have been used to reproduce myocardial infarction models but in the last years mice became the animals of choice for the analysis of several diseases, due to their short life cycle and the possibility of genetic manipulation. Many techniques are currently used for cardiovascular imaging in mice, including X-ray computed tomography (CT), high-resolution ultrasound, magnetic resonance imaging, and nuclear medicine procedures. Cardiac positron emission tomography (PET) allows to examine noninvasively, on a molecular level and with high sensitivity, regional changes in myocardial perfusion, metabolism, apoptosis, inflammation, and gene expression or to measure changes in anatomical and functional parameters in heart diseases. Currently hybrid PET/CT scanners for small laboratory animals are available, where CT adds high-resolution anatomical information. This paper reviews mouse models of myocardial infarction and discusses the applications of dedicated PET/CT systems technology, including animal preparation, anesthesia, radiotracers, and images postprocessing

    Gallium-Containing Mesoporous Bioactive Glass with Potent Hemostatic Activity and Antibacterial Efficacy

    Get PDF
    Haemorrhage remains the leading cause of potentially survivable death in both military and civilian populations. Although a large variety of hemostatic agents have been developed, many of them have an inadequate capacity to induce hemostasis and are not effective in killing bacteria. In recent years, mesoporous bioactive glasses (MBGs) were found to be effective in inducing hemostasis. However, the materials may not be considered as ideal hemostats since they do not offer antimicrobial activity. The gallium ion (Ga+3) not only exhibits antibacterial properties but also accelerates the blood coagulation cascade. The aim of this study was to develop MBGs containing various concentrations of Ga2O3 (1, 2 & 3 mol%) via the evaporation-induced self-assembly (EISA) process and investigate whether the addition of Ga3+ would induce both hemostatic and antibacterial effects. The results indicated that the incorporation of lower Ga2O3 content (1 mol%) into the MBG system improved structural properties including the specific surface area, mesopore size and pore volume as well as the release of silicon and calcium ions. The bioactive glass was found to stimulate blood coagulation, platelet adhesion and thrombus generation and exerted an antibacterial effect against both Escherichia coli and Staphylococcus aureus. Likewise, Ga-doped MBGs showed excellent cytocompatibility even after 3 days, with the 1% Ga2O3-containing MBG attaining the best biocompatibility that render them safe hemostatic agents for stopping bleeding. This study demonstrated that the lowest Ga2O3-substituted MBG can be a potent candidate for controlling haemorrhage and wound infection

    Combined microcomputed tomography, biomechanical and histomorphometric analysis of the peri-implant bone: A pilot study in minipig model

    Get PDF
    Objectives To present a practical approach that combines biomechanical tests, microcomputed tomography (μCT) and histomorphometry, providing quantitative results on bone structure and mechanical properties in a minipig model, in order to investigate the specific response to an innovative dental biomaterial. Methods Titanium implants with innovative three-dimensional scaffolds were inserted in the tibias of 4 minipigs. Primary stability and osseointegration were investigated by means of insertion torque (IT) values, resonance frequency analysis (RFA), bone-to-implant contact (BIC), bone mineral density (BMD) and stereological measures of trabecular bone. Results A significant positive correlation was found between IT and RFA (r = 0.980, p = 0.0001). BMD at the implant sites was 18% less than the reference values (p = 0.0156). Peri-implant Tb.Th was 50% higher, while Tb.N was 50% lower than the reference zone (p < 0.003) and they were negatively correlated (r = -0.897, p = 0.006). Significance μCT increases evaluation throughput and offers the possibility for qualitative three-dimensional recording of the bone-implant system as well as for non-destructive evaluation of bone architecture and mineral density, in combination with conventional analysis methods. The proposed multimodal approach allows to improve accuracy and reproducibility for peri-implant bone measurements and could support future investigations

    Genetic deletion in uncoupling protein 3 augments 18F-fluorodeoxyglucose cardiac uptake in the ischemic heart

    Get PDF
    BACKGROUND: We investigated the effects of uncoupling protein 3 (UCP3) genetic deletion on 18F-fluorodeoxyglucose (FDG) cardiac uptake by positron emission tomography (PET)/computed tomography (CT) dedicated animal system after permanent coronary artery ligation. METHODS: Cardiac 18F-FDG PET/CT was performed in UCP3 knockout (UCP3-/-) and wild-type (WT) mice one week after induction of myocardial infarction or sham procedure. RESULTS: In sham-operated mice no difference in left ventricular (LV) volume was detectable between WT and UCP3-/-. After myocardial infarction, LV volume was higher in both WT and UCP3-/- compared to sham animals, with a significant interaction (p < 0.05) between genotype and myocardial infarction. In sham-operated animals no difference in FDG standardized uptake value (SUV) was detectable between WT (1.8 ± 0.6) and UCP3-/- (1.8 ± 0.6). After myocardial infarction SUV was significantly higher in remote areas than in infarcted territories in both UCP3-/- and WT mice (both p < 0.01). Moreover, in remote areas, SUV was significantly higher (p < 0.001) in UCP3-/- as compared to WT, while in the infarcted territory SUV was comparable (p = 0.29). A significant relationship (r = 0.68, p < 0.001) between LV volume and SUV was found. CONCLUSIONS: In a mice model of permanent coronary occlusion, UCP3 deficiency results in a metabolic shift that favored glycolytic metabolism and increased FDG uptake in remote areas

    Potency and Cytotoxicity of a Novel Gallium-Containing Mesoporous Bioactive Glass/Chitosan Composite Scaffold as Hemostatic Agents

    Get PDF
    Chitosan-based hemostats are promising candidates for immediate hemorrhage control. However, they have some disadvantages and require further improvement to achieve the desired hemostatic efficiency. Here, a series of 1% Ga2O3-containing mesoporous bioactive glass-chitosan composite scaffolds (Ga-MBG/CHT) were constructed by the lyophilization process and the effect of various concentrations of Ga-MBG (10, 30, and 50 wt %) on the hemostatic function of the CHT scaffold was assessed as compared to that of Celox Rapid gauze (CXR), a current commercially available chitosan-coated hemostatic gauze. The prepared scaffolds exhibited \u3e79% porosity and showed increased water uptake compared to that in CXR. The results of coagulation studies showed that pure CHT and composite scaffolds exhibited increased hemostatic performance with respect to CXR. Furthermore, the composite scaffold with the highest Ga-MBG content (50 wt %) had increased capability to enhancing thrombus generation, blood clotting, and platelet adhesion and aggregation than that of the scaffold made of pure CHT. The antibacterial efficacy and biocompatibility of the prepared scaffolds were also assessed by a time-killing assay and an Alamar Blue assay, respectively. Our results show that the antibacterial effect of 50% Ga-MBG/CHT was more pronounced than that of CHT and CXR. The cell viability results also demonstrated that Ga-MBG/CHT composite scaffolds had good biocompatibility, which facilitates the spreading and proliferation of human dermal fibroblast cells even with 50 wt % Ga-MBG loading. These results suggest that Ga-MBG/CHT scaffolds could be a promising hemostatic candidate for improving hemostasis in critical situations
    corecore