888 research outputs found

    Impact of bimetallic interface design on heat generation in plasmonic Au/Pd nanostructures studied by single-particle thermometry

    Get PDF
    Localized surface plasmons are lossy and generate heat. However, accurate measurement of the temperature of metallic nanoparticles under illumination remains an open challenge, creating difficulties in the interpretation of results across plasmonic applications. Particularly, there is a quest for understanding the role of temperature in plasmon-assisted catalysis. Bimetallic nanoparticles combining plasmonic with catalytic metals are raising increasing interest in artificial photosynthesis and the production of solar fuels. Here, we perform single-particle thermometry measurements to investigate the link between morphology and light-to-heat conversion of colloidal Au/Pd nanoparticles with two different configurations: core–shell and core-satellite. It is observed that the inclusion of Pd as a shell strongly reduces the photothermal response in comparison to the bare cores, while the inclusion of Pd as satellites keeps photothermal properties almost unaffected. These results contribute to a better understanding of energy conversion processes in plasmon-assisted catalysis.Fil: Gargiulo, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; ArgentinaFil: Herran, Matias. Ludwig Maximilians Universitat; AlemaniaFil: Violi, Ianina Lucila. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaFil: Sousa Castillo, Ana. Ludwig Maximilians Universitat; AlemaniaFil: Martínez, Luciana Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaFil: Ezendam, Simone. Ludwig Maximilians Universitat; AlemaniaFil: Barella, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaFil: Giesler, Helene. Universitat Essen; AlemaniaFil: Grzeschik, Roland. Universitat Essen; AlemaniaFil: Schlücker, Sebastian. Universitat Essen; AlemaniaFil: Maier, Stefan A.. Monash University; Australia. Imperial College London; Reino Unido. Ludwig Maximilians Universitat; AlemaniaFil: Stefani, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaFil: Cortés, Emiliano. Ludwig Maximilians Universitat; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentin

    In situ photothermal response of single gold nanoparticles through hyperspectral imaging anti-stokes thermometry

    Get PDF
    Several fields of applications require a reliable characterization of the photothermal response and heat dissipation of nanoscopic systems, which remains a challenging task for both modeling and experimental measurements. Here, we present an implementation of anti-Stokes thermometry that enables the in situ photothermal characterization of individual nanoparticles (NPs) from a single hyperspectral photoluminescence confocal image. The method is label-free, potentially applicable to any NP with detectable anti-Stokes emission, and does not require any prior information about the NP itself or the surrounding media. With it, we first studied the photothermal response of spherical gold NPs of different sizes on glass substrates, immersed in water, and found that heat dissipation is mainly dominated by the water for NPs larger than 50 nm. Then, the role of the substrate was studied by comparing the photothermal response of 80 nm gold NPs on glass with sapphire and graphene, two materials with high thermal conductivity. For a given irradiance level, the NPs reach temperatures 18% lower on sapphire and 24% higher on graphene than on bare glass. The fact that the presence of a highly conductive material such as graphene leads to a poorer thermal dissipation demonstrates that interfacial thermal resistances play a very significant role in nanoscopic systems and emphasize the need for in situ experimental thermometry techniques. The developed method will allow addressing several open questions about the role of temperature in plasmon-assisted applications, especially ones where NPs of arbitrary shapes are present in complex matrixes and environments.Fil: Barella, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaFil: Violi, Ianina Lucila. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaFil: Gargiulo, Julian. Ludwig Maximilians Universitat; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Martínez, Luciana Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaFil: Goschin, Florian. Ludwig Maximilians Universitat; AlemaniaFil: Guglielmotti, Victoria. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pallarola, Diego Andres. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Schlücker, Sebastian. Universitat Essen; AlemaniaFil: Pilo Pais, Mauricio. University Of Fribourg; SuizaFil: Acuna, Guillermo P.. University Of Fribourg; SuizaFil: Maier, Stefan A.. Ludwig Maximilians Universitat; Alemania. Imperial College London; Reino UnidoFil: Cortés, Emiliano. Ludwig Maximilians Universitat; AlemaniaFil: Stefani, Fernando Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentin

    Challenges on Optical Printing of Colloidal Nanoparticles

    Get PDF
    While colloidal chemistry provides ways to obtain a great variety of nanoparticles with different shapes, sizes, material composition, and surface functions, their controlled deposition and combination on arbitrary positions of substrates remains a considerable challenge. Over the last ten years, optical printing arose as a versatile method to achieve this purpose for different kinds of nanoparticles. In this article, we review the state of the art of optical printing of single nanoparticles and discuss its strengths, limitations, and future perspectives, by focusing on four main challenges: printing accuracy, resolution, selectivity, and nanoparticles photostability.Fil: Violi, Ianina Lucila. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; ArgentinaFil: Martínez, Luciana Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaFil: Barella, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaFil: Zaza, María Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Chvátal, Lukás. Czech Academy of Sciences; República ChecaFil: Zemánek, Pavel. Czech Academy of Sciences; República ChecaFil: Gutierrez, Marina Veronica. Universidad Tecnológica Nacional. Facultad Regional Delta; ArgentinaFil: Paredes, María Yanela. Universidad Tecnológica Nacional. Facultad Regional Delta; ArgentinaFil: Scarpettini, Alberto Franco. Universidad Tecnológica Nacional. Facultad Regional Delta; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Olmos Trigo, Jorge. Donostia International Physic Center; EspañaFil: Pais, Valeria Rocío. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Díaz Nóblega, Iván Agustín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Cortés, Emiliano. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ludwig Maximilians Universitat. Katholisch - Theologische Fakultat; AlemaniaFil: Sáenz, Juan José. Donostia International Physic Center; EspañaFil: Bragas, Andrea Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Gargiulo, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina. Ludwig Maximilians Universitat. Katholisch - Theologische Fakultat; AlemaniaFil: Stefani, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentin

    Understanding and reducing photothermal forces for the fabrication of Au nanoparticle dimers by optical printing

    Get PDF
    Optical printing holds great potential to enable the use of the vast variety of colloidal nanoparticles (NPs) in nano- and microdevices and circuits. By means of optical forces, it enables the direct assembly of NPs, one by one, onto specific positions of solid surfaces with great flexibility of pattern design and no need of previous surface patterning. However, for unclear causes it was not possible to print identical NPs closer to each other than 300 nm. Here, we show that the repulsion restricting the optical printing of close by NPs arises from light absorption by the printed NPs and subsequent local heating. By optimizing heat dissipation, it is possible to reduce the minimum separation between NPs. Using a reduced graphene oxide layer on a sapphire substrate, we demonstrate for the first time the optical printing of Au-Au NP dimers. Modeling the experiments considering optical, thermophoretic, and thermo-osmotic forces we obtain a detailed understanding and a clear pathway for the optical printing fabrication of complex nano structures and circuits based on connected colloidal NPs.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada

    Cosmic CARNage II: the evolution of the galaxy stellar mass function in observations and galaxy formation models

    Get PDF
    We present a comparison of the observed evolving galaxy stellar mass functions with the predictions of eight semi-analytic models and one halo occupation distribution model. While most models are able to fit the data at low redshift, some of them struggle to simultaneously fit observations at high redshift. We separate the galaxies into 'passive' and 'star-forming' classes and find that several of the models produce too many low-mass star-forming galaxies at high redshift compared to observations, in some cases by nearly a factor of 10 in the redshift range 2.5 < z < 3.0. We also find important differences in the implied mass of the dark matter haloes the galaxies inhabit, by comparing with halo masses inferred from observations. Galaxies at high redshift in the models are in lower mass haloes than suggested by observations, and the star formation efficiency in low-mass haloes is higher than observed. We conclude that many of the models require a physical prescription that acts to dissociate the growth of low-mass galaxies from the growth of their dark matter haloes at high redshift.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plat

    Cosmic CARNage II: the evolution of the galaxy stellar mass function in observations and galaxy formation models

    Get PDF
    We present a comparison of the observed evolving galaxy stellar mass functions with the predictions of eight semi-analytic models and one halo occupation distribution model. While most models are able to fit the data at low redshift, some of them struggle to simultaneously fit observations at high redshift. We separate the galaxies into 'passive' and 'star-forming' classes and find that several of the models produce too many low-mass star-forming galaxies at high redshift compared to observations, in some cases by nearly a factor of 10 in the redshift range 2.5 < z < 3.0. We also find important differences in the implied mass of the dark matter haloes the galaxies inhabit, by comparing with halo masses inferred from observations. Galaxies at high redshift in the models are in lower mass haloes than suggested by observations, and the star formation efficiency in low-mass haloes is higher than observed. We conclude that many of the models require a physical prescription that acts to dissociate the growth of low-mass galaxies from the growth of their dark matter haloes at high redshift.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plat

    Cosmic CARNage II: the evolution of the galaxy stellar mass functionin observations and galaxy formation models

    Get PDF
    We present a comparison of the observed evolving galaxy stellar mass functions with the predictions of eight semi-analytic models and one halo occupation distribution model. While most models are able to fit the data at low redshift, some of them struggle to simultaneously fit observations at high redshift. We separate the galaxies into ‘passive’ and ‘star-forming’ classes and find that several of the models produce too many low-mass star-forming galaxies at high redshift compared to observations, in some cases by nearly a factor of 10 in the redshift range 2.5 < z < 3.0. We also find important differences in the implied mass of the dark matter haloes the galaxies inhabit, by comparing with halo masses inferred from observations. Galaxies at high redshift in the models are in lower mass haloes than suggested by observations, and the star formation efficiency in low-mass haloes is higher than observed. We conclude that many of the models require a physical prescription that acts to dissociate the growth of low-mass galaxies from the growth of their dark matter haloes at high redshift
    corecore