164 research outputs found

    nIFTy cosmology: comparison of galaxy formation models

    Get PDF
    We present a comparison of 14 galaxy formation models: 12 different semi-analytical models and 2 halo occupation distribution models for galaxy formation based upon the same cosmological simulation and merger tree information derived from it. The participating codes have proven to be very successful in their own right but they have all been calibrated independently using various observational data sets, stellar models, and merger trees. In this paper, we apply them without recalibration and this leads to a wide variety of predictions for the stellar mass function, specific star formation rates, stellar-to-halo mass ratios, and the abundance of orphan galaxies. The scatter is much larger than seen in previous comparison studies primarily because the codes have been used outside of their native environment within which they are well tested and calibrated. The purpose of the 'nIFTy comparison of galaxy formation models' is to bring together as many different galaxy formation modellers as possible and to investigate a common approach to model calibration. This paper provides a unified description for all participating models and presents the initial, uncalibrated comparison as a baseline for our future studies where we will develop a common calibration framework and address the extent to which that reduces the scatter in the model predictions seen here.La lista completa de autores que integran el documento puede consultarse en el archivo.Instituto de Astrofísica de La PlataFacultad de Ciencias Astronómicas y Geofísica

    nIFTy cosmology: comparison of galaxy formation models

    Get PDF
    We present a comparison of 14 galaxy formation models: 12 different semi-analytical models and 2 halo occupation distribution models for galaxy formation based upon the same cosmological simulation and merger tree information derived from it. The participating codes have proven to be very successful in their own right but they have all been calibrated independently using various observational data sets, stellar models, and merger trees. In this paper, we apply them without recalibration and this leads to a wide variety of predictions for the stellar mass function, specific star formation rates, stellar-to-halo mass ratios, and the abundance of orphan galaxies. The scatter is much larger than seen in previous comparison studies primarily because the codes have been used outside of their native environment within which they are well tested and calibrated. The purpose of the 'nIFTy comparison of galaxy formation models' is to bring together as many different galaxy formation modellers as possible and to investigate a common approach to model calibration. This paper provides a unified description for all participating models and presents the initial, uncalibrated comparison as a baseline for our future studies where we will develop a common calibration framework and address the extent to which that reduces the scatter in the model predictions seen here.La lista completa de autores que integran el documento puede consultarse en el archivo.Instituto de Astrofísica de La PlataFacultad de Ciencias Astronómicas y Geofísica

    The nebular emission of star-forming galaxies in a hierarchical universe

    Get PDF
    Galaxy surveys targeting emission lines are characterizing the evolution of star-forming galaxies, but there is still little theoretical progress in modelling their physical properties. We predict nebular emission from star-forming galaxies within a cosmological galaxy formation model. Emission lines are computed by combining the semi-analytical model SAG with the photoionization code MAPPINGS-III. We characterize the interstellar medium of galaxies by relating the ionization parameter of gas in galaxies to their cold gas metallicity, obtaining a reasonable agreement with the observed Hα, [O II] λ 3727, [O III] λ 5007 luminosity functions, and the BPT diagram for local star-forming galaxies. The average ionization parameter is found to increase towards low star formation rates and high redshifts, consistent with recent observational results. The predicted link between different emission lines and their associated star formation rates is studied by presenting scaling relations to relate them. Our model predicts that emission-line galaxies have modest clustering bias, and thus reside in dark matter haloes of masses below Mhalo ≲ 1012 [h−1 M⊙]. Finally, we exploit our modelling technique to predict galaxy number counts up to z ∼ 10 by targeting far-infrared emission lines detectable with submillimetre facilities.Fil: Orsi, Alvaro. Pontificia Universidad Católica de Chile; ChileFil: Padilla, Nelson David. Pontificia Universidad Católica de Chile; ChileFil: Groves, Brent. Max Planck Institute For Astronomy;Fil: Cora, Sofia Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; ArgentinaFil: Tecce, Tomas Enrique. Pontificia Universidad Católica de Chile; ChileFil: Gargiulo, Ignacio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; ArgentinaFil: Ruiz, Andrés Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomia Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomia Teórica y Experimental; Argentin

    XMM-Newton observations of NGC 3268 in the Antlia Galaxy Cluster: characterization of a hidden group of galaxies at z ~0.41

    Get PDF
    We report on a detailed X-ray study of the extended emission of the intracluster medium (ICM) around NGC3268 in the Antlia Cluster of galaxies, together with a characterization of an extended source in the field, namely a background cluster of galaxies at z ~ 0.41, which was previously accounted as an X-ray point source. The spectral properties of the extended emission of the gas present in Antlia were studied using data from the XMM-Newton satellite, complemented with optical images of Cerro Tololo Inter-American Observatory (CTIO) Blanco telescope, to attain for associations of the optical sources with the X-ray emission. The XMM-Newton observations show that the intracluster gas is concentrated in a region centred in one of the main galaxies of the cluster, NGC3268. By means of a spatially resolved spectral analysis, we derived abundances of the ICM plasma. We found a wall-like feature in the north-east direction, where the gas is characterized by a lower temperature with respect to the rest of the ICM. Furthermore, using combined optical observations, we inferred the presence of an elliptical galaxy in the centre of the extended X-ray source considered as a background cluster, which favours this interpretation.Instituto de Astrofísica de La PlataInstituto Argentino de Radioastronomí

    nIFTy cosmology: comparison of galaxy formation models

    Get PDF
    We present a comparison of 14 galaxy formation models: 12 different semi-analytical models and 2 halo occupation distribution models for galaxy formation based upon the same cosmological simulation and merger tree information derived from it. The participating codes have proven to be very successful in their own right but they have all been calibrated independently using various observational data sets, stellar models, and merger trees. In this paper, we apply them without recalibration and this leads to a wide variety of predictions for the stellar mass function, specific star formation rates, stellar-to-halo mass ratios, and the abundance of orphan galaxies. The scatter is much larger than seen in previous comparison studies primarily because the codes have been used outside of their native environment within which they are well tested and calibrated. The purpose of the 'nIFTy comparison of galaxy formation models' is to bring together as many different galaxy formation modellers as possible and to investigate a common approach to model calibration. This paper provides a unified description for all participating models and presents the initial, uncalibrated comparison as a baseline for our future studies where we will develop a common calibration framework and address the extent to which that reduces the scatter in the model predictions seen here.La lista completa de autores que integran el documento puede consultarse en el archivo.Instituto de Astrofísica de La PlataFacultad de Ciencias Astronómicas y Geofísica

    The nebular emission of star-forming galaxies in a hierarchical universe

    Get PDF
    Galaxy surveys targeting emission lines are characterizing the evolution of star-forming galaxies, but there is still little theoretical progress in modelling their physical properties. We predict nebular emission from star-forming galaxies within a cosmological galaxy formation model. Emission lines are computed by combining the semi-analytical model SAG with the photoionization code MAPPINGS-III. We characterize the interstellar medium of galaxies by relating the ionization parameter of gas in galaxies to their cold gas metallicity, obtaining a reasonable agreement with the observed Hα, [O II] λ 3727, [O III] λ 5007 luminosity functions, and the BPT diagram for local star-forming galaxies. The average ionization parameter is found to increase towards low star formation rates and high redshifts, consistent with recent observational results. The predicted link between different emission lines and their associated star formation rates is studied by presenting scaling relations to relate them. Our model predicts that emission-line galaxies have modest clustering bias, and thus reside in dark matter haloes of masses below Mhalo ≲ 1012 [h−1 M⊙]. Finally, we exploit our modelling technique to predict galaxy number counts up to z ∼ 10 by targeting far-infrared emission lines detectable with submillimetre facilities.Instituto de Astrofísica de La PlataFacultad de Ciencias Astronómicas y Geofísica

    The nebular emission of star-forming galaxies in a hierarchical universe

    Get PDF
    Galaxy surveys targeting emission lines are characterizing the evolution of star-forming galaxies, but there is still little theoretical progress in modelling their physical properties. We predict nebular emission from star-forming galaxies within a cosmological galaxy formation model. Emission lines are computed by combining the semi-analytical model SAG with the photoionization code MAPPINGS-III. We characterize the interstellar medium of galaxies by relating the ionization parameter of gas in galaxies to their cold gas metallicity, obtaining a reasonable agreement with the observed Hα, [O II] λ 3727, [O III] λ 5007 luminosity functions, and the BPT diagram for local star-forming galaxies. The average ionization parameter is found to increase towards low star formation rates and high redshifts, consistent with recent observational results. The predicted link between different emission lines and their associated star formation rates is studied by presenting scaling relations to relate them. Our model predicts that emission-line galaxies have modest clustering bias, and thus reside in dark matter haloes of masses below Mhalo ≲ 1012 [h−1 M⊙]. Finally, we exploit our modelling technique to predict galaxy number counts up to z ∼ 10 by targeting far-infrared emission lines detectable with submillimetre facilities.Instituto de Astrofísica de La PlataFacultad de Ciencias Astronómicas y Geofísica

    Chemoarchaeological downsizing in a hierarchical universe: impact of a top-heavy IGIMF

    Get PDF
    We make use of a semi-analytical model of galaxy formation to investigate the origin of the observed correlation between [α/Fe] abundance ratios and stellar mass in elliptical galaxies.We implement a new galaxy-wide stellar initial mass function (IMF; top-heavy integrated galaxy initial mass function, TH-IGIMF) in the semi-analytic model SAG (acronym for semi-analytic galaxies) and evaluate its impact on the chemical evolution of galaxies. The star formation rate (SFR) dependence of the slope of the TH-IGIMF is found to be key to reproducing the correct [α/Fe]-stellar mass relation. Massive galaxies reach higher [α/Fe] abundance ratios because they are characterized by more top-heavy IMFs as a result of their higher SFR. As a consequence of our analysis, the value of the minimum embedded star cluster mass and of the slope of the embedded cluster mass function, which are free parameters involved in the TH-IGIMF theory, are found to be as lowas 5 and 2M⊙, respectively. Amild downsizing trend is present for galaxies generated assuming either a universal IMF or a variable TH-IGIMF.We find that, regardless of galaxy mass, older galaxies (with formation redshifts ≳2) are formed in shorter time-scales (≲2 Gyr), thus achieving larger [α/Fe] values. Hence, the time-scale of galaxy formation alone cannot explain the slope of the [α/Fe]-galaxy mass relation, but is responsible for the big dispersion of [α/Fe] abundance ratios at fixed stellar mass. We further test the hypothesis of a TH-IGIMF in elliptical galaxies by looking into mass-to-light ratios, and luminosity functions. Models with a TH-IGIMF are also favoured by these constraints. In particular, mass-to-light ratios agree with observed values for massive galaxies while being overpredicted for less massive ones; this overprediction is present regardless of the IMF considered.Instituto de Astrofísica de La PlataFacultad de Ciencias Astronómicas y Geofísica

    Stellar Populations in a semi-analytic model I: Bulges of Milky Way-like galaxies

    Get PDF
    We study the stellar populations of bulges of MilkyWay-like (MW-like) galaxies with the aim of identifying the physical processes involved in the formation of the bulge of our Galaxy. We use the semi-analytic model of galaxy formation and evolution SAG adapted to this aim; these kind of models can trace the properties of galaxies and their components like stellar discs, bulges and haloes, but resolution limits prevent them from reaching the scale of stellar populations (SPs). Properties of groups of stars formed during single star formation events are stored and tracked in the model and results are compared with observations of stars in the galactic bulge. MW-like galaxies are selected using two different criteria. One of them considers intrinsic photo-metric properties and the second is focused on the cosmological context of the local group (LG) of galaxies. We compare our model results with spectroscopic and photometric stellar metallicity distributions. We find that 87 per cent of stars in bulges of MW-type galaxies in our model are accreted and formed in starbursts during disc instability events. Mergers contribute to 13 per cent of the mass budget of the bulge and are responsible for the low metallicity tail of the distribution. Abundance ratios of α elements with respect to iron, [α/Fe], are measured in SPs of model galaxies. The patterns found in the model for SPs with different origins help to explain the lack of a gradient of [α/Fe] ratios in observed stars along the minor axis of the bulge.Instituto de Astrofísica de La PlataFacultad de Ciencias Astronómicas y Geofísica

    Semi-analytic galaxies : I. Synthesis of environmental and star-forming regulation mechanisms

    Get PDF
    We present results from the semi-analytic model of galaxy formation SAG applied on the MULTIDARK simulation MDPL2. SAG features an updated supernova (SN) feedback scheme and a robust modelling of the environmental effects on satellite galaxies. This incorporates a gradual starvation of the hot gas halo driven by the action of ram pressure stripping (RPS), that can affect the cold gas disc, and tidal stripping (TS), which can act on all baryonic components. Galaxy orbits of orphan satellites are integrated providing adequate positions and velocities for the estimation of RPS and TS. The star formation history and stellar mass assembly of galaxies are sensitive to the redshift dependence implemented in the SN feedback model. We discuss a variant of our model that allows to reconcile the predicted star formation rate density at z ≳ 3 with the observed one, at the expense of an excess in the faint end of the stellar mass function at z= 2. The fractions of passive galaxies as a function of stellar mass, halo mass, and the halo-centric distances are consistent with observational measurements. The model also reproduces the evolution of the main sequence of star-forming central and satellite galaxies. The similarity between them is a result of the gradual starvation of the hot gas halo suffered by satellites, in which RPS plays a dominant role. RPS of the cold gas does not affect the fraction of quenched satellites but it contributes to reach the right atomic hydrogen gas content for more massive satellites (M* ≳1010M⊙).Instituto de Astrofísica de La PlataFacultad de Ciencias Astronómicas y Geofísica
    corecore