59 research outputs found
On Computability of Equilibria in Markets with Production
Although production is an integral part of the Arrow-Debreu market model,
most of the work in theoretical computer science has so far concentrated on
markets without production, i.e., the exchange economy. This paper takes a
significant step towards understanding computational aspects of markets with
production.
We first define the notion of separable, piecewise-linear concave (SPLC)
production by analogy with SPLC utility functions. We then obtain a linear
complementarity problem (LCP) formulation that captures exactly the set of
equilibria for Arrow-Debreu markets with SPLC utilities and SPLC production,
and we give a complementary pivot algorithm for finding an equilibrium. This
settles a question asked by Eaves in 1975 of extending his complementary pivot
algorithm to markets with production.
Since this is a path-following algorithm, we obtain a proof of membership of
this problem in PPAD, using Todd, 1976. We also obtain an elementary proof of
existence of equilibrium (i.e., without using a fixed point theorem),
rationality, and oddness of the number of equilibria. We further give a proof
of PPAD-hardness for this problem and also for its restriction to markets with
linear utilities and SPLC production. Experiments show that our algorithm runs
fast on randomly chosen examples, and unlike previous approaches, it does not
suffer from issues of numerical instability. Additionally, it is strongly
polynomial when the number of goods or the number of agents and firms is
constant. This extends the result of Devanur and Kannan (2008) to markets with
production.
Finally, we show that an LCP-based approach cannot be extended to PLC
(non-separable) production, by constructing an example which has only
irrational equilibria.Comment: An extended abstract will appear in SODA 201
Ascending-Price Algorithms for Unknown Markets
We design a simple ascending-price algorithm to compute a
-approximate equilibrium in Arrow-Debreu exchange markets with
weak gross substitute (WGS) property, which runs in time polynomial in market
parameters and . This is the first polynomial-time
algorithm for most of the known tractable classes of Arrow-Debreu markets,
which is easy to implement and avoids heavy machinery such as the ellipsoid
method. In addition, our algorithm can be applied in unknown market setting
without exact knowledge about the number of agents, their individual utilities
and endowments. Instead, our algorithm only relies on queries to a global
demand oracle by posting prices and receiving aggregate demand for goods as
feedback. When demands are real-valued functions of prices, the oracles can
only return values of bounded precision based on real utility functions. Due to
this more realistic assumption, precision and representation of prices and
demands become a major technical challenge, and we develop new tools and
insights that may be of independent interest. Furthermore, our approach also
gives the first polynomial-time algorithm to compute an exact equilibrium for
markets with spending constraint utilities, a piecewise linear concave
generalization of linear utilities. This resolves an open problem posed by Duan
and Mehlhorn (2015).Comment: 33 page
An Improved Combinatorial Polynomial Algorithm for the Linear Arrow-Debreu Market
We present an improved combinatorial algorithm for the computation of
equilibrium prices in the linear Arrow-Debreu model. For a market with
agents and integral utilities bounded by , the algorithm runs in time. This improves upon the previously best algorithm of Ye by a
factor of \tOmega(n). The algorithm refines the algorithm described by Duan
and Mehlhorn and improves it by a factor of \tOmega(n^3). The improvement
comes from a better understanding of the iterative price adjustment process,
the improved balanced flow computation for nondegenerate instances, and a novel
perturbation technique for achieving nondegeneracy.Comment: to appear in SODA 201
Fair and Efficient Allocations under Subadditive Valuations
We study the problem of allocating a set of indivisible goods among agents
with subadditive valuations in a fair and efficient manner. Envy-Freeness up to
any good (EFX) is the most compelling notion of fairness in the context of
indivisible goods. Although the existence of EFX is not known beyond the simple
case of two agents with subadditive valuations, some good approximations of EFX
are known to exist, namely -EFX allocation and EFX allocations
with bounded charity.
Nash welfare (the geometric mean of agents' valuations) is one of the most
commonly used measures of efficiency. In case of additive valuations, an
allocation that maximizes Nash welfare also satisfies fairness properties like
Envy-Free up to one good (EF1). Although there is substantial work on
approximating Nash welfare when agents have additive valuations, very little is
known when agents have subadditive valuations. In this paper, we design a
polynomial-time algorithm that outputs an allocation that satisfies either of
the two approximations of EFX as well as achieves an
approximation to the Nash welfare. Our result also improves the current
best-known approximation of and to
Nash welfare when agents have submodular and subadditive valuations,
respectively.
Furthermore, our technique also gives an approximation to a
family of welfare measures, -mean of valuations for ,
thereby also matching asymptotically the current best known approximation ratio
for special cases like while also retaining the fairness
properties
Breaking the Barrier for Approximate Maximin Share
We study the fundamental problem of fairly allocating a set of indivisible
goods among agents with additive valuations using the desirable fairness
notion of maximin share (MMS). MMS is the most popular share-based notion, in
which an agent finds an allocation fair to her if she receives goods worth at
least her MMS value. An allocation is called MMS if all agents receive at least
their MMS value. However, since MMS allocations need not exist when , a
series of works showed the existence of approximate MMS allocations with the
current best factor of . The recent work by
Akrami et al. showed the limitations of existing approaches and proved that
they cannot improve this factor to . In this paper, we bypass
these barriers to show the existence of -MMS
allocations by developing new reduction rules and analysis techniques
Computing Equilibria in Markets with Budget-Additive Utilities
We present the first analysis of Fisher markets with buyers that have
budget-additive utility functions. Budget-additive utilities are elementary
concave functions with numerous applications in online adword markets and
revenue optimization problems. They extend the standard case of linear
utilities and have been studied in a variety of other market models. In
contrast to the frequently studied CES utilities, they have a global satiation
point which can imply multiple market equilibria with quite different
characteristics. Our main result is an efficient combinatorial algorithm to
compute a market equilibrium with a Pareto-optimal allocation of goods. It
relies on a new descending-price approach and, as a special case, also implies
a novel combinatorial algorithm for computing a market equilibrium in linear
Fisher markets. We complement these positive results with a number of hardness
results for related computational questions. We prove that it is NP-hard to
compute a market equilibrium that maximizes social welfare, and it is PPAD-hard
to find any market equilibrium with utility functions with separate satiation
points for each buyer and each good.Comment: 21 page
- …