356 research outputs found

    Vascular derived endothelin receptor A controls endothelin-induced retinal ganglion cell death.

    Get PDF
    Endothelin (EDN, also known as ET) signaling has been suggested to be an important mediator of retinal ganglion cell (RGC) death in glaucoma. Antagonism of EDN receptors (EDNRA and EDNRB, also known as ET-A and ET-B) prevented RGC death in mouse models of chronic ocular hypertension, and intravitreal injection of EDN ligand was sufficient to drive RGC death. However, it remains unclear which cell types EDN ligands directly affect to elicit RGC death. Multiple cell types in the retina and optic nerve express EDNRA and EDNRB and thus could respond to EDN ligands in the context of glaucoma. Here, we systematically deleted Edn receptors from specific cell types to identify the critical EDN receptor mediating RGC death in vivo. Deletion of both Ednra and Ednrb from retinal neurons (including RGCs) and macroglia did not prevent RGC loss after exposure to EDN1 ligands, suggesting EDN1 ligands cause RGC death via an indirect mechanism involving a secondary cell type. Deletion of Ednra from the full body, and then specifically from vascular mural cells, prevented EDN1-induced vasoconstriction and RGC death. Together, these data suggest EDN ligands cause RGC death via a mechanism initiated by vascular mural cells. It is possible RGC death is a consequence of vascular mural cell-induced vasoconstriction and its pathological sequelae. These results highlight the potential importance of neurovascular dysfunction in glaucoma

    Deficiency of Complement Component C1Q Prevents Cerebrovascular Damage and White Matter Loss in a Mouse Model of Chronic Obesity.

    Get PDF
    Age-related cognitive decline and many dementias involve complex interactions of both genetic and environmental risk factors. Recent evidence has demonstrated a strong association of obesity with the development of dementia. Furthermore, white matter damage is found in obese subjects and mouse models of obesity. Here, we found that components of the complement cascade, including complement component 1qa (C1QA) and C3 are increased in the brain of Western diet (WD)-fed obese mice, particularly in white matter regions. To functionally test the role of the complement cascade in obesity-induced brain pathology, female and male mice deficient in C1QA, an essential molecule in the activation of the classical pathway of the complement cascade, were fed a WD and compared with WD-fed wild type (WT) mice, and t

    Transcriptional profiling predicts running promotes cerebrovascular remodeling in young but not midlife mice.

    Get PDF
    BACKGROUND: The incidence of dementia and cognitive decline is increasing with no therapy or cure. One of the reasons treatment remains elusive is because there are various pathologies that contribute to age-related cognitive decline. Specifically, with Alzheimer\u27s disease, targeting to reduce amyloid beta plaques and phosphorylated tau aggregates in clinical trials has not yielded results to slow symptomology, suggesting a new approach is needed. Interestingly, exercise has been proposed as a potential therapeutic intervention to improve brain health and reduce the risk for dementia, however the benefits throughout aging are not well understood. RESULTS: To better understand the effects of exercise, we preformed transcriptional profiling on young (1-2 months) and midlife (12 months) C57BL/6 J (B6) male mice after 12 weeks of voluntary running. Data was compared to age-matched sedentary controls. Interestingly, the midlife running group naturally broke into two cohorts based on distance ran - either running a lot and more intensely (high runners) or running less and less intensely (low runners). Midlife high runners had lower LDL cholesterol as well as lower adiposity (%fat) compared to sedentary, than midlife low runners compared to sedentary suggesting more intense running lowered systemic markers of risk for age-related diseases including dementias. Differential gene analysis of transcriptional profiles generated from the cortex and hippocampus showed thousands of differentially expressed (DE) genes when comparing young runners to sedentary controls. However, only a few hundred genes were DE comparing either midlife high runners or midlife low runners to midlife sedentary controls. This indicates that, in our study, the effects of running are reduced through aging. Gene set enrichment analyses identified enrichment of genes involved in extracellular matrix (ECM), vascular remodeling and angiogenesis in young runners but not midlife runners. These genes are known to be expressed in multiple vascular-related cell types including astrocytes, endothelial cells, pericytes and smooth muscle cells. CONCLUSIONS: Taken together these results suggest running may best serve as a preventative measure to reduce risk for cerebrovascular decline. Ultimately, this work shows that exercise may be more effective to prevent dementia if introduced at younger ages

    Endothelin 1-induced retinal ganglion cell death is largely mediated by JUN activation.

    Get PDF
    Glaucoma is a neurodegenerative disease characterized by loss of retinal ganglion cells (RGCs), the output neurons of the retina. Multiple lines of evidence show the endothelin (EDN, also known as ET) system is important in glaucomatous neurodegeneration. To date, the molecular mechanisms within RGCs driving EDN-induced RGC death have not been clarified. The pro-apoptotic transcription factor JUN (the canonical target of JNK signaling) and the endoplasmic reticulum stress effector and transcription factor DNA damage inducible transcript 3 (DDIT3, also known as CHOP) have been shown to act downstream of EDN receptors. Previous studies demonstrated that JUN and DDIT3 were important regulators of RGC death after glaucoma-relevant injures. Here, we characterized EDN insult in vivo and investigated the role of JUN and DDIT3 in EDN-induced RGC death. To accomplish this, EDN1 ligand was intravitreally injected into the eyes of wildtype, Six3-cre+Junfl/fl (Jun-/-), Ddit3 null (Ddit3-/-), and Ddit3-/-Jun-/- mice. Intravitreal EDN1 was sufficient to drive RGC death in vivo. EDN1 insult caused JUN activation in RGCs, and deletion of Jun from the neural retina attenuated RGC death after EDN insult. However, deletion of Ddit3 did not confer significant protection to RGCs after EDN1 insult. These results indicate that EDN caused RGC death via a JUN-dependent mechanism. In addition, EDN signaling is known to elicit potent vasoconstriction. JUN signaling was shown to drive neuronal death after ischemic insult. Therefore, the effects of intravitreal EDN1 on retinal vessel diameter and hypoxia were explored. Intravitreal EDN1 caused transient retinal vasoconstriction and regions of RGC and Müller glia hypoxia. Thus, it remains a possibility that EDN elicits a hypoxic insult to RGCs, causing apoptosis via JNK-JUN signaling. The importance of EDN-induced vasoconstriction and hypoxia in causing RGC death after EDN insult and in models of glaucoma requires further investigation

    Differential splicing of neuronal genes in a Trem2*R47H mouse model mimics alterations associated with Alzheimer\u27s disease.

    Get PDF
    BACKGROUND: Molecular characterization of late-onset Alzheimer\u27s disease (LOAD), the leading cause of age-related dementia, has revealed transcripts, proteins, and pathway alterations associated with disease. Assessing these postmortem signatures of LOAD in experimental model systems can further elucidate their relevance to disease origins and progression. Model organisms engineered with human genetic factors further link these signatures to disease-associated variants, especially when studies are designed to leverage homology across species. Here we assess differential gene splicing patterns in aging mouse models carrying humanized APOE4 and/or the Trem2*R47H variant on a C57BL/6J background. We performed a differential expression of gene (DEG) and differential splicing analyses on whole brain transcriptomes at multiple ages. To better understand the difference between differentially expressed and differentially spliced genes, we evaluated enrichment of KEGG pathways and cell-type specific gene signatures of the adult brain from each alteration type. To determine LOAD relevance, we compared differential splicing results from mouse models with multiple human AD splicing studies. RESULTS: We found that differentially expressed genes in Trem2*R47H mice were significantly enriched in multiple AD-related pathways, including immune response, osteoclast differentiation, and metabolism, whereas differentially spliced genes were enriched for neuronal related functions, including GABAergic synapse and glutamatergic synapse. These results were reinforced by the enrichment of microglial genes in DEGs and neuronal genes in differentially spliced genes in Trem2*R47H mice. We observed significant overlap between differentially spliced genes in Trem2*R47H mice and brains from human AD subjects. These effects were absent in APOE4 mice and suppressed in APOE4.Trem2*R47H double mutant mice relative to Trem2*R47H mice. CONCLUSIONS: The cross-species observation that alternative splicing observed in LOAD are present in Trem2*R47H mouse models suggests a novel link between this candidate risk gene and molecular signatures of LOAD in neurons and demonstrates how deep molecular analysis of new genetic models links molecular disease outcomes to a human candidate gene

    Is Breast Cancer Risk Associated with Menopausal Hormone Therapy Modified by Current or Early Adulthood BMI or Age of First Pregnancy?

    Get PDF
    Menopausal hormone therapy (MHT) has an attenuated effect on breast cancer (BC) risk amongst heavier women, but there are few data on a potential interaction with early adulthood body mass index (at age 20 years) and age of first pregnancy. We studied 56,489 women recruited to the PROCAS (Predicting Risk of Cancer at Screening) study in Manchester UK, 2009-15. Cox regression models estimated the effect of reported MHT use at entry on breast cancer (BC) risk, and potential interactions with a. self-reported current body mass index (BMI), b. BMI aged 20 and c. First pregnancy >30 years or nulliparity compared with first pregnancy <30 years. Analysis was adjusted for age, height, family history, age of menarche and menopause, menopausal status, oophorectomy, ethnicity, self-reported exercise and alcohol. With median follow up of 8 years, 1663 breast cancers occurred. BC risk was elevated amongst current users of combined MHT compared to never users (Hazard ratioHR 1.64, 95% CI 1.32-2.03), risk was higher than for oestrogen only users (HR 1.03, 95% CI 0.79-1.34). Risk of current MHT was attenuated by current BMI (interaction HR 0.80, 95% CI 0.65-0.99) per 5 unit increase in BMI. There was little evidence of an interaction between MHT use, breast cancer risk and early and current BMI or with age of first pregnancy

    Transcriptional control of retinal ganglion cell death after axonal injury.

    Get PDF
    Injury to the axons of retinal ganglion cells (RGCs) is a key pathological event in glaucomatous neurodegeneration. The transcription factors JUN (the target of the c-Jun N-terminal kinases, JNKs) and DDIT3/CHOP (a mediator of the endoplasmic reticulum stress response) have been shown to control the majority of proapoptotic signaling after mechanical axonal injury in RGCs and in other models of neurodegeneration. The downstream transcriptional networks controlled by JUN and DDIT3, which are critical for RGC death, however, are not well defined. To determine these networks, RNA was isolated from the retinas of wild-type mice and mice deficient in Jun, Ddit3, and both Jun and Ddit3 three days after mechanical optic nerve crush injury (CONC). RNA-sequencing data analysis was performed and immunohistochemistry was used to validate potential transcriptional signaling changes after axonal injury. This study identified downstream transcriptional changes after injury including both neuronal survival and proinflammatory signaling that were attenuated to differing degrees by loss of Ddit3, Jun, and Ddit3/Jun. These data suggest proinflammatory signaling in the retina might be secondary to activation of pro-death pathways in RGCs after acute axonal injury. These results determine the downstream transcriptional networks important for apoptotic signaling which may be important for ordering and staging the pro-degenerative signals after mechanical axonal injury

    Genetic perturbations of disease risk genes in mice capture transcriptomic signatures of late-onset Alzheimer\u27s disease.

    Get PDF
    BACKGROUND: New genetic and genomic resources have identified multiple genetic risk factors for late-onset Alzheimer\u27s disease (LOAD) and characterized this common dementia at the molecular level. Experimental studies in model organisms can validate these associations and elucidate the links between specific genetic factors and transcriptomic signatures. Animal models based on LOAD-associated genes can potentially connect common genetic variation with LOAD transcriptomes, thereby providing novel insights into basic biological mechanisms underlying the disease. METHODS: We performed RNA-Seq on whole brain samples from a panel of six-month-old female mice, each carrying one of the following mutations: homozygous deletions of Apoe and Clu; hemizygous deletions of Bin1 and Cd2ap; and a transgenic APOEε4. Similar data from a transgenic APP/PS1 model was included for comparison to early-onset variant effects. Weighted gene co-expression network analysis (WGCNA) was used to identify modules of correlated genes and each module was tested for differential expression by strain. We then compared mouse modules with human postmortem brain modules from the Accelerating Medicine\u27s Partnership for AD (AMP-AD) to determine the LOAD-related processes affected by each genetic risk factor. RESULTS: Mouse modules were significantly enriched in multiple AD-related processes, including immune response, inflammation, lipid processing, endocytosis, and synaptic cell function. WGCNA modules were significantly associated with Apoe CONCLUSIONS: This study of genetic mouse models provides a basis to dissect the role of AD risk genes in relevant AD pathologies. We determined that different genetic perturbations affect different molecular mechanisms comprising AD, and mapped specific effects to each risk gene. Our approach provides a platform for further exploration into the causes and progression of AD by assessing animal models at different ages and/or with different combinations of LOAD risk variants

    APOE ε4 and exercise interact in a sex-specific manner to modulate dementia risk factors

    Get PDF
    Abstract Introduction: Apolipoprotein E (APOE) ε4 is the strongest genetic risk factor for Alzheimer\u27s disease and related dementias (ADRDs), affecting many different pathways that lead to cognitive decline. Exercise is one of the most widely proposed prevention and intervention strategies to mitigate risk and symptomology of ADRDs. Importantly, exercise and APOE ε4 affect similar processes in the body and brain. While both APOE ε4 and exercise have been studied extensively, their interactive effects are not well understood. Methods: To address this, male and female APOE ε3/ε3, APOE ε3/ε4, and APOE ε4/ε4 mice ran voluntarily from wean (1 month) to midlife (12 months). Longitudinal and cross-sectional phenotyping were performed on the periphery and the brain, assessing markers of risk for dementia such as weight, body composition, circulating cholesterol composition, murine daily activities, energy expenditure, and cortical and hippocampal transcriptional profiling. Results: Data revealed chronic running decreased age-dependent weight gain, lean and fat mass, and serum low-density lipoprotein concentration dependent on APOE genotype. Additionally, murine daily activities and energy expenditure were significantly influenced by an interaction between APOE genotype and running in both sexes. Transcriptional profiling of the cortex and hippocampus predicted that APOE genotype and running interact to affect numerous biological processes including vascular integrity, synaptic/neuronal health, cell motility, and mitochondrial metabolism, in a sex-specific manner. Discussion: These data in humanized mouse models provide compelling evidence that APOE genotype should be considered for population-based strategies that incorporate exercise to prevent ADRDs and other APOE-relevant diseases
    • …
    corecore