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ARTICLE OPEN

Vascular derived endothelin receptor A controls endothelin-
induced retinal ganglion cell death
Olivia J. Marola 1,2,3, Gareth R. Howell4 and Richard T. Libby 1,3,5✉

© The Author(s) 2022

Endothelin (EDN, also known as ET) signaling has been suggested to be an important mediator of retinal ganglion cell (RGC) death
in glaucoma. Antagonism of EDN receptors (EDNRA and EDNRB, also known as ET-A and ET-B) prevented RGC death in mouse
models of chronic ocular hypertension, and intravitreal injection of EDN ligand was sufficient to drive RGC death. However, it
remains unclear which cell types EDN ligands directly affect to elicit RGC death. Multiple cell types in the retina and optic nerve
express EDNRA and EDNRB and thus could respond to EDN ligands in the context of glaucoma. Here, we systematically deleted Edn
receptors from specific cell types to identify the critical EDN receptor mediating RGC death in vivo. Deletion of both Ednra and
Ednrb from retinal neurons (including RGCs) and macroglia did not prevent RGC loss after exposure to EDN1 ligands, suggesting
EDN1 ligands cause RGC death via an indirect mechanism involving a secondary cell type. Deletion of Ednra from the full body, and
then specifically from vascular mural cells, prevented EDN1-induced vasoconstriction and RGC death. Together, these data suggest
EDN ligands cause RGC death via a mechanism initiated by vascular mural cells. It is possible RGC death is a consequence of
vascular mural cell-induced vasoconstriction and its pathological sequelae. These results highlight the potential importance of
neurovascular dysfunction in glaucoma.
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INTRODUCTION
Glaucoma is a neurodegenerative condition affecting the output
neurons of the retina—the retinal ganglion cells (RGCs). One of
the most important risk factors for developing glaucomatous
neurodegeneration is elevated intraocular pressure (IOP) [1]. To
date, elevated IOP is the only clinically treatable component of
glaucoma, and unfortunately, normalizing IOP does not prevent
glaucoma progression or development in many patients [2].
Therefore, understanding the molecular signaling pathways that
lead from ocular hypertensive injury to RGC death is critical for
understanding the pathobiology of glaucoma. Recent evidence
has suggested the importance of RGC-extrinsic signaling events
(e.g., neuroinflammation, neurovascular dysfunction) in triggering
glaucomatous RGC injury [3–6]. Molecular clustering analysis of
ocular hypertensive DBA/2J retinas and optic nerves revealed
several candidate mechanisms that are potentially critical in
driving RGC injury in glaucoma, including activation of the
endothelin system [5, 7].
The endothelin system is a family of three ligands (EDN1, 2, and

3, also known as ET-1, 2, and 3) and two G-protein coupled
receptors (EDNRA and EDNRB, also known as ET-A and ET-B). The
canonical role of the endothelin system is to regulate blood flow
and vasoconstriction. Potent vasoconstriction occurs when EDN
ligands bind to EDNRA [8–11], which is highly expressed by
vascular mural cells [6, 12, 13], including smooth muscle cells
[14–17] and pericytes [18, 19]. EDNRB is expressed by vascular

endothelial cells [20–22], and is thought to mediate vasorelaxation
in response to ligand binding. Many organ systems, including the
central nervous system, use the endothelin system to maintain
normal physiology [23, 24].
As with many signaling systems that have a physiological role,

endothelin signaling has also been broadly implicated in the
pathophysiology of numerous diseases, including retinal diseases
and glaucoma [25, 26]. EDN ligands and receptors are known to be
expressed by glaucoma-relevant cell types. EDN ligands have been
shown to be expressed by retinal and optic nerve macroglia [6, 27]
and myeloid-derived cells [5, 6], while both EDN receptors are
expressed by retinal neurons (including RGCs) [12, 14, 25, 28, 29]
and macroglia [26, 30–33]. Endothelin signaling has been
hypothesized to play a role in human glaucoma. Levels of EDN
ligand were found to be higher in the aqueous humor and plasma
of glaucoma patients [34, 35]. Changes in blood flow have been
documented in human [36–39] and animal models [3, 5] of
glaucoma, and it is hypothesized that these changes could be
important factors in the development and progression of
glaucoma. Animal models of ocular hypertension have also
indicated a potential role for endothelin signaling in glaucoma.
Edn ligands and receptors were significantly upregulated in retinas
and optic nerve heads of ocular hypertensive DBA/2J mice before
the onset of glaucomatous neurodegeneration [3, 5, 6]. Similar
patterns of endothelin system upregulation were found in models
of acutely induced ocular hypertension [28] and after glaucoma-
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relevant optic nerve crush [40]. EDN ligands are sufficient to cause
RGC death— intravitreal injection or transgenic overexpression of
EDN ligands caused significant RGC loss and axonal degeneration
[3, 5, 11, 12, 41–44]. Caspase 3 activation in RGCs and later RGC
loss after EDN1 exposure was dependent upon JUN activation,
similar to RGC death after glaucoma-relevant injuries including
optic nerve crush [45] and ocular hypertension [46]. Importantly,
pan-antagonism of EDN receptors with Bosentan or Macitentan
conferred significant protection from glaucomatous neurodegen-
eration in DBA/2J ocular hypertensive mice [5, 6]. Thus, targeting
endothelin signaling may have potential as a neuroprotective
treatment for glaucoma.
Despite their apparent role in glaucoma pathology, it is unclear

how EDN ligands act in the retina or optic nerve to ultimately
drive RGC death. It is possible EDN ligands cause RGC death
directly via RGC-expressed EDN receptors, as has been demon-
strated in vitro [12]. But it is also possible EDN ligands bind to
receptors expressed by astrocytes or vasculature, thereby trigger-
ing a neurotoxic response. Understanding the cell types important
in EDN-induced RGC death will provide insight into early, critical
pathways of glaucomatous neurodegeneration and can identify
potential therapeutic targets for neuroprotective glaucoma
treatments. The present work utilized cell-specific deletions of
Ednra and/or Ednrb to investigate the mechanisms by which EDN
ligands drive RGC death in vivo.

RESULTS
EDN ligand did not act through RGC- or macroglia-expressed
EDN receptors to cause RGC death
Intravitreal delivery of EDN ligand was sufficient to drive RGC
death [3, 5, 11, 12, 41, 42]. Studies have suggested EDN ligands
cause RGC death directly. Primary RGCs in culture underwent cell
death after EDN ligand exposure [12, 25], suggesting EDN ligands
can bind to RGC-expressed EDN receptors and drive cell death.
There is evidence to suggest RGCs express both EDNRB
[6, 12, 13, 28, 29] and EDNRA [12, 28, 29], therefore, EDN ligands
could bind to either or both RGC-expressed EDN receptors to
directly cause RGC death. To investigate whether EDN ligands
affect RGCs directly, Six3-cre was used to recombine homozygous
floxed alleles of Ednra and/or Ednrb. Six3-cre is well known to
recombine floxed alleles in retinal neurons, including in 80% of
RGCs [45]. Of note, studies have reported Six3-cre-mediated
recombination of floxed alleles in macroglia (astrocytes and Müller
glia), but not in vascular cells [47–49]. Macroglia (Müller glia and
astrocytes) are known to robustly express EDNRB [6], and some
studies have shown EDNRA expression by astrocytes [31–33].
Therefore, EDN ligand could feasibly bind to EDN receptors
expressed by macroglia to ultimately cause RGC death.
To determine whether neuronal and/or macroglial EDN receptors

are required for EDN-induced RGC death, EDN1 was intravitreally
injected into the eyes of WT (Six3-cre−Ednra+/+Ednrb+/+, Six3-
cre+Ednrafl/flEdnrb+/+, and Six3-cre+Ednra+/+Ednrbfl/fl mice. PBS
was injected into the contralateral eye as a vehicle-matched
control. As expected,` Six3-cre-mediated deletion of Edn receptors
did not interfere with EDN1-induced vasoconstriction (vascular
smooth muscle-expressed EDNRA is known to induce vasoconstric-
tion upon ligand binding [8–11]). Intravitreal EDN1 injection caused
similar levels of vasoconstriction in WT, Six3-cre+Ednrafl/fl, Six3-
cre+Ednrbfl/fl, and Six3-cre+Ednrafl/flEdnrbfl/fl retinas (Fig. 1A). Pre-
vious reports have shown EDN1 caused caspase 3 activation
(cleavage; cCASP3) in RGCs 5 days post-intravitreal injection, which
corresponded to RGC dropout by 28 days [44]. Genetic manipula-
tions that prevented later RGC dropout also prevented early
caspase 3 activation [44]—a pattern which is also observed after
other glaucoma-relevant injuries [46, 50]. Therefore, the presence of
cCASP3+ RGCs was used to assess RGC injury after EDN1 injection.
As reported previously, intravitreal injection of PBS did not drive

appreciable caspase 3 activation in RGCs, and intravitreal injection
of EDN1 ligand drove significant caspase 3 activation in RGCs (Fig.
1B). Surprisingly, deletion of either Ednra or Ednrb from retinal
neurons (including RGCs) and macroglia did not prevent EDN1-
induced caspase 3 activation (cleavage) in RGCs (Fig. 1B). To
address the possibility that both EDN receptors expressed by retinal
neurons and/or macroglia are required to cause RGC death, EDN1
was injected into the eyes of Six3-cre+Ednrafl/flEdnrbfl/fl mice.
Deletion of both Edn receptors from macroglia and retinal neurons
did not prevent caspase 3 activation in RGCs in response to EDN1
(Fig. 1B). These data suggest EDN1 ligands did not directly affect
neurons (including RGCs) or macroglia to drive RGC death. Rather,
EDN1 ligands acted through either EDNRA or EDNRB expressed by
a different cell type. These results necessitated the identification of
the EDN receptor, regardless of the cell type expressing it, which
ultimately drives EDN1-induced RGC death.

Endothelin ligand acted through non-neuronal, non-
macroglial EDNRA to elicit RGC death
Given EDN1 did not elicit RGC death via RGC- or macroglia-
expressed EDN receptors, EDN1 must directly affect a different cell
type through either EDNRA or EDNRB. Beyond retinal neurons and
macroglia, Ednra is known to be expressed by vascular mural cells
[6, 12–19], and Ednrb is known to be expressed by endothelial cells
[20–22]. It is also possible Ednra and/or Ednrb are expressed at low
levels by another cell type (e.g., myeloid cells) and are able to
pathologically respond to EDN ligand exposure. To determine
whether EDN acts through EDNRB or EDNRA to cause RGC death,
EDN1-induced RGC death was assessed in mice with global
deletions of Ednra or Ednrb (Cag-creERT2+Ednrafl/fl and Cag-
creERT2+Ednrbfl/fl mice were treated with tamoxifen to produce
full-body knockouts).
Cag-creERT2+TdTomato+ retinas and optic nerves were first

evaluated to assess Cag-creERT2 recombination efficiency. Cag-
creERT2+TdTomato+ retinas had TdTomato expression in nearly all
DAPI+ cells in the retina, including retinal neurons, macroglia, and
vascular cells (Fig. 2A). Furthermore, EDN ligand is known to
induce vasoconstriction upon binding to vascular mural cell-
expressed EDNRA [8–11]. Cag-creERT2-mediated deletion of Ednra
completely prevented retinal vasoconstriction in response to
intravitreal EDN1 (Fig. 2B). Therefore, EDN receptors were
successfully deleted from the major cell types in the retina and
optic nerve known to endogenously express each receptor. To
determine whether EDN ligand binds to EDNRA or EDNRB to
ultimately elicit RGC death, EDN1 was intravitreally injected into
both Cag-creERT2+Ednrafl/fl and Cag-creERT2+Ednrbfl/fl mice. Global
deletion of Ednra, but not Ednrb, prevented EDN1-induced caspase
3 activation in RGCs 5 days following injury (Fig. 3A). Furthermore,
global Ednra deletion prevented RGC loss 28 days post-EDN1
(Fig. 3B). These data suggest, in contrast to previous reports
[12, 25], EDN ligands act through non-neuronal/macroglial cell
types expressing EDNRA to ultimately cause RGC death.

Endothelin ligand caused RGC death via mural cell-expressed
EDNRA
Full-body deletion of Ednra prevented both EDN1-induced vaso-
constriction and RGC death. Beyond expression by RGCs and
astrocytes, EDNRA is expressed by vascular mural cells. Upon ligand
binding, vascular mural cell EDNRA elicits contraction (vasoconstric-
tion) [8–11]. Therefore, the role of vascular mural cell EDNRA in RGC
death in response to EDN ligand was investigated. To accomplish
this, Ednrafl alleles were recombined from vascular mural cells
(vascular smooth muscle cells and pericytes) with Myh11-creERT2

upon tamoxifen treatment [51, 52]. Myh11-creERT2+TdTomato+

retinas were first evaluated to assess cre recombination efficiency
and specificity in retinal vascular cells (Fig. 4A–C). In vivo
angiography and ex vivo immunofluorescence revealed TdTomato
expression was specifically localized to retinal arteries (identified by
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distinct branching pattern compared to retinal veins [53]) and
capillaries in superficial, intermediate, and deep layers of the retina.
Importantly, EDN1-induced vasoconstriction was attenuated in
Myh11-creERT2+Ednrafl/fl retinas (Fig. 4D). Therefore, Ednrafl alleles
were specifically and efficiently recombined from retinal vascular

mural cells. To determine whether EDN acts through vascular mural
cell-expressed EDNRA to cause RGC death, EDN1 ligand was
intravitreally injected into Myh11-creERT2+Ednrafl/fl mice. Mural cell
deletion of Ednra prevented caspase 3 activation in RGCs 5 days
after EDN1 (Fig. 5A), and prevented RGC loss after 28 days (Fig. 5B).

Fig. 1 EDN1 did not cause RGC death directly or via macroglia-expressed receptors. A Fluorescein angiography of retinal vasculature in naive
and EDN1-injected eyes from WT, Six3-cre+Ednrafl/flEdnrb+/+, Six3-cre+Ednra+/+Ednrbfl/fl, and Six3-cre+Ednrafl/flEdnrbfl/fl animals. Deletion of either or
both Edn receptors with Six3-cre did not prevent EDN1-induced vasoconstriction (n ≥ 3). B Retinal flat mounts and quantification of cleaved
caspase 3+ (cCASP3+, red) RBPMS+ (green) cells from WT, Six3-cre+Ednra+/+Ednrbfl/fl, Six3-cre+Ednrafl/flEdnrb+/+, Six3-cre+Ednrafl/flEdnrbfl/fl 5 days
post-EDN1 or PBS (vehicle control) injection. Each genotype group had significant increases in cCASP3+ RGCs compared to PBS controls. No
significant difference in cCASP3+ RGCs was observed between genotype groups after EDN1. cCASP3+ RGCs/mm2 ± SEM: PBS: 0.8 ± 0.3, WT:
32.0 ± 7.2, Six3-cre+Ednrafl/flEdnrb+/+: 23.7 ± 8.6, Six3-cre+Ednra+/+Ednrbfl/fl: 32.3 ± 9.5, Six3-cre+Ednrafl/flEdnrbfl/fl: 19.8 ± 6.0 (n ≥ 7 per genotype, *P <
0.05, Kruskal–Wallis test). Scale bars, 50 μm.
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Fig. 2 Cag-creERT2 robustly recombined floxed alleles in retinal and optic nerve DAPI+ cells. A Cag-creERT2+Tdtomato+ retinal and optic
nerve head sections depicting cell-type-specific expression of Tdtomato. Cag-creERT2 robustly recombined floxed alleles in DAPI+ cells, including
RBPMS+ RGCs, SOX2+Müller glia, GFAP+ retinal astrocytes, CD31+ vascular cells, and SOX2+ GFAP+ optic nerve head (ONH) astrocytes (n= 3).
Scale bars, 50 μm. B Fluorescein angiography of retinal vasculature in naive and EDN1-injected eyes from WT, Cag-creERT2+Ednrbfl/fl, and Cag-
creERT2+Ednrafl/fl animals. Full body deletion of Ednra ablated EDN1-induced vasoconstriction (n ≥ 5).
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Therefore, EDN1 ligand acted through EDNRA expressed by mural
cells to ultimately drive RGC death.

DISCUSSION
Glaucoma is a multifactorial, heterogeneous neurodegenerative
condition. Often In glaucoma, an increase in IOP leads to RGC
injury and subsequent death. Several hypotheses have been
postulated as to how ocular hypertension leads to RGC injury in
glaucoma. Recent work has provided strong evidence for the role
of endothelin signaling in causing RGC injury and subsequent
death in models of chronic ocular hypertension [5, 6]. EDN ligands
were upregulated in human [34, 54] and animal models
[3, 5, 25, 40] of glaucoma, and intravitreal injection of EDN ligand
was sufficient to drive caspase 3 activation in RGCs, which
corresponded with later RGC death [44]. Similar to models of
glaucoma-relevant axonal injury [45] and ocular hypertension [46],
deletion of Jun from RGCs prevented caspase 3 activation in RGCs
and prevented later RGC loss after intravitreal EDN1 injection [44].
Pan-antagonism of EDN receptors significantly slowed RGC loss in
the DBA/2J model of ocular hypertension [5, 6], suggesting a
causal role for the endothelin system in glaucoma pathogenesis.
However, it was unknown which cell type EDN ligands directly
affect in order to ultimately drive RGC death, and through which
receptor (EDNRA or EDNRB) this occurs.
Previous in vitro studies have suggested EDN ligands can cause

primary RGC death, suggesting EDN ligands are directly neuro-
toxic to RGCs (acting through RGC-expressed EDN receptors) [12].
Here, we demonstrate EDN1 ligands did not cause RGC death
directly and did not cause RGC death by affecting other retinal
neurons or macroglia in vivo (Fig. 1). Also, in contrast with
previous studies suggesting EDN ligands act through EDNRB to

drive RGC death in vitro, after EDN injection in vivo, and in a
model of chronic ocular hypertension [12, 25], EDNRB was not
required for EDN1-induced RGC death. Rather, EDNRA was the
receptor that was necessary for EDN1-induced RGC death (Fig. 3).
Given the canonical role of EDNRA is to mediate vasoconstriction
[8–11], we investigated the importance of mural cell-expressed
EDNRA in EDN-induced RGC death. We demonstrated EDN1-
induced RGC death was driven by vascular mural cell (smooth
muscle and pericyte)-expressed EDNRA (Fig. 5). These data do not
preclude the possibility that vascular mural cells respond to EDN1
by eliciting neurotoxic paracrine or endocrine signaling. However,
it is likely EDN1-induced RGC death is a result of EDNRA-mediated
vasoconstriction and its sequalae.
Because Edn ligands were upregulated in DBA/2J glaucoma

[3, 5, 7], pan-antagonism of EDN signaling lessened RGC loss after
ocular hypertensive insults [5, 6], and EDN1-induced RGC death
was driven by vascular mural cell-expressed EDNRA (Fig. 5), it is
possible that chronic vascular pathology or vasoconstriction is an
important mediator of RGC death in glaucoma. Vascular involve-
ment is consistent with several observations in human and animal
models of glaucoma. Reduced ocular and retinal blood flow have
been documented in human [36–39] and animal models [3, 5] of
glaucoma, and it is hypothesized that these changes could be
important factors in the development and progression of
glaucoma. Hypoxic glia and RGCs were present after acute
[55, 56] and chronic [57] ocular hypertension in rodents,
suggesting the potential importance of hypoxia in driving
glaucoma-relevant pathology.
If vascular EDNRA-induced vasoconstriction causes RGC death

in response to EDN ligand, it will be important to investigate the
pathological cellular events that lead from vasoconstriction to RGC
death. While EDN1 injection was shown to cause regional RGC and

Fig. 3 EDN1 ligand acted through EDNRA to drive RGC death. A Retinal flat mounts from WT, Cag-creERT2+Ednrbfl/fl, and Cag-creERT2+Ednrafl/fl

mice immunoassayed for cCASP3 and RBPMS 5 days post-EDN1. Cag-creERT2+Ednrbfl/fl retinas had similar numbers of cCASP3+ RGCs compared
to WT controls, while Cag-creERT2+Ednrafl/fl mice had significantly reduced cCASP3+ RGCs compared to both WT and Cag-creERT2+Ednrbfl/fl

retinas. cCASP3+ RGCs/mm2 ± SEM: WT: 24.2 ± 8.9 Cag-creERT2+Ednrbfl/fl: 18.0 ± 7.4, Cag-creERT2+Ednrafl/fl: 0.7 ± 0.1 (n ≥ 6, *P < 0.01, Kruskal-Wallis
test). Scale bar, 50 μm. B Flat mounted WT and Cag-creERT2+Ednrafl/fl retinas immunoassayed for RBPMS 28 days post-EDN1 injection. Full body
deletion of Ednra prevented EDN1-induced RGC loss. %RBPMS+ cell survival±SEM for WT and Cag-creERT2+Ednrafl/fl respectively: PBS: 100.0 ± 3.4,
100.0 ± 2.7; EDN1: 82.0 ± 2.7, 97.0 ± 3.8 (n ≥ 6, *P < 0.05, two-way ANOVA, Holm–Sidak post hoc). Scale bars, 50 μm.
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glial hypoxia [44] (similar to glaucomatous ocular hypertension
[55, 57]), oxygen deprivation itself is unlikely to cause this RGC
death. Oxygen deprivation severe enough to cause RGC death is
also known to cause loss of amacrine neurons [58–62]. Previous
work has demonstrated that, similar to ocular hypertension [63],
EDN1 injection was not sufficient to drive the death of amacrine
cells [44]. Therefore, if vasoconstriction is important in EDN-
induced RGC death, it most likely drives secondary neurotoxic
pathological events.
Chronic low-level hypoxia mediated by endothelin signaling

may lead to compromise of the blood-brain barrier after EDN1
exposure and in glaucoma. In vitro, hypoxic conditions were
sufficient to degrade endothelial cell tight junctions and cause
barrier permeability [64–66]. Chronic mild hypoxia [67] and

transgenic overexpression or injection of EDN ligand [43, 68, 69]
led to loss of blood–brain barrier integrity and vascular leakage
in vivo. Breakdown of the blood-brain barrier and subsequent
infiltration of peripheral immune cells has been suggested to drive
neurodegeneration in glaucoma—prevention of immune cell
infiltration with radiation therapy protected from glaucoma in
DBA/2J mice [3]. Similarly, deletion of Cd11b (also known as Itgam
—a cell adhesion protein critical for tissue infiltration of
monocytes) was shown to lessen monocyte infiltration into the
optic nerve head and protect from glaucomatous neurodegenera-
tion in DBA/2J mice [70]. Consistent with these results, deletion of
Glycam (a proteoglycan ligand for L-selectin known to prevent
transendothelial migration of leukocytes) promoted monocyte
infiltration into the optic nerve head and weakened the protection

Fig. 4 Myh11-creERT2 recombined floxed alleles in vascular mural cells. A Myh11-creERT2+Tdtomato+ fluorescein angiography overlayed
with TdTomato fluorescence demonstrating TdTomato localization to retinal arteries (n= 4). B Myh11-creERT2Tdtomato+ retinal flat mounts
counterstained with CD31 to visualize retinal vasculature. Tdtomato was robustly and specifically expressed by arterial cells and capillaries, but
not by RBPMS+ RGCs or any other observable cell type. C Tdtomato+ cells surrounding retinal capillaries were apparent in superficial,
intermediate, and deep layers of the retina (n= 3). Scale bars, 50 μm. D Fluorescein angiography of retinal vasculature in naive and EDN1-
injected eyes from WT and Myh11-creERT2+Ednrafl/fl animals. Mural cell-specific deletion of Ednra ablated EDN1-induced vasoconstriction (n ≥
5).
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afforded to DBA/2J retinas by radiation treatment [4]. Given the
importance of vascular compromise in glaucoma, it is possible that
EDNRA-induced vasoconstriction and its sequelae damages the
blood-brain barrier and plays a role in neurodegeneration in
response to EDN1 ligand and in glaucoma.
It is also possible that EDN-induced regional mild hypoxia can

affect immune cells in the retina or optic nerve. Astrocytes took on
a reactive phenotype in response to hypoxia in vitro [71, 72] and
in vivo [73, 74], which could potentially lead to a neurotoxic gliotic
response. Furthermore, astrocytes aid in maintaining blood-brain
barrier integrity. Chronic hypoxic conditions led to a loss of
astrocyte-endothelial cell contacts [65]. Astrocytes are also known
to upregulate and secrete VEGF upon hypoxic insult [75].
Astrocyte-specific VEGF was critical for pathological neovascular-
ization after retinal hypoxic injury in vivo [76]. VEGF was required
for hypoxia-induced blood-brain barrier breakdown [66], and
astrocyte-specific VEGF was shown to cause blood–brain barrier
breakdown in vitro [77]. Together, these data suggest hypoxia can
cause changes in retinal astrocytes, which can in turn drive
neurotoxic signaling and/or contribute to breakdown of the
blood–brain barrier. The mechanisms by which EDN-EDNRA
signaling drive RGC death must be elucidated, and the importance
of these events in driving glaucomatous neurodegeneration upon
chronic ocular hypertension merits future investigation.

MATERIALS AND METHODS
Mice
All mice used were 1.5–6 months of age. Mice were fed chow and water ad
libitum and housed on a 12-hour light-to-dark cycle. All experiments were
conducted in adherence to the Association for Research in Vision and

Ophthalmology’s statement on the use of animals in ophthalmic and vision
research and were approved by the University of Rochester’s University
Committee on Animal Resources. C57BL/6N-Atm1BrdEdnratm1a(EUCOMM)Hmgu/
JMmucd knockout-first mice with promoter-driven alleles were obtained
through UC Davis KOMP Repository. These mice were crossed with flippase
recombinase transgenic mice (Flptg, URMC genomics research core) to
generate offspring with Ednrafl alleles. Ednrbtm1.1Nat/J alleles were obtained
from the Jackson Laboratory (Ednrbfl; Stock #011080 [47]). Mice with Ednrafl

and Ednrbfl alleles were bred to Tg(Six3-cre)69Frty/GcoJ transgenic mice
(Six3-cre+; Jackson Laboratory, Stock# 019755) [48] to generate mice with
a conditional deletion of Ednra and/or Ednrb from retinal neurons and
macroglia. Mice with Ednrafl or Ednrbfl alleles were also bred to Tg(CAG-cre/
Esr1*)5Amc/J transgenic mice (Cag-creERT2+; JAX Stock #004682) [78] to
produce offspring with full-body deletions of Ednra or Ednrb upon
tamoxifen treatment. Mice with Ednrafl alleles were bred to Tg(Myh11-cre/
ERT2)1Soff/J transgenic mice (Myh11-creERT2+; Jackson Laboratory, Stock#
019079) [79] to generate mice with a conditional deletion of Ednra from
vascular mural cells upon tamoxifen treatment. Mice transgenic for Cag-
creERT2 or Myh11-creERT2 recombinase were bred to Gt(ROSA)26Sortm75.1

(CAG-tdTomato*)Hze/J conditional reporter mice (TdTomato+; JAX stock 025106)
to generate offspring as TdTomato reporters of cre expression.

Statistical analysis and experimental rigor
Power calculations were performed before experiments were conducted to
determine the appropriate sample size. Data were analyzed using
GraphPad Prism9 software. Data from experiments designed to test
differences between two groups were subjected to an F test to compare
variance and a Shapiro-Wilk test to test normality to ensure appropriate
statistical tests were utilized. For non-normally distributed data designed
to test differences between two groups, a Mann–Whitney test was utilized.
Data from experiments designed to test differences among more than two
groups across one condition were subjected to a Brown–Forsythe test to
compare variance and a Shapiro–Wilk test to test normality to ensure an

Fig. 5 EDNRA expressed by vascular mural cells elicited RGC death in response to EDN1. A Flat mounted retinas immunoassayed for
cCASP3 and RBPMS 5 days post-EDN1 injection. Ednra deletion from vascular mural cells significantly reduced numbers of cCASP3+ RGCs after
EDN1 injury. cCASP3+ RGCs/mm2: WT: 23.6 ± 7.6, Myh11-creERT2+Ednrafl/fl: 6.0 ± 4.4 (n ≥ 9, *P= 0.009, Mann–Whitney test). B Flat mounted WT
and Myh11-creERT2+Ednrafl/fl retinas immunoassayed for RBPMS 28 days post-EDN1 injection. Mural cell deletion of Ednra prevented EDN-
induced RGC loss. %RBPMS+ cell survival ± SEM for WT and Myh11-creERT2+Ednrafl/fl respectively: PBS: 100.0 ± 2.3, 100.0 ± 1.4; EDN1: 85.0 ± 4.3,
101.4 ± 1.3 (n ≥ 8, *P ≤ 0.001, two-way ANOVA, Holm–Sidak post hoc). Scale bars, 50 μm.
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appropriate statistical test was utilized. Data from experiments designed to
detect differences among multiple groups and across one condition were
analyzed using a Kruskal–Wallis test with Dunn’s post hoc test. Data from
experiments designed to detect differences among multiple groups and
across two conditions were analyzed using a two-way analysis of variance
followed by Holm–Sidak’s post hoc test. For these statistical tests, every
possible comparison was made when relevant, and multiplicity adjusted P
values are reported. In all cases, data met the assumptions of the statistical
test used. P values < 0.05 were considered statistically significant.
Throughout the manuscript, results are reported as mean ± standard error
of the mean (SEM).
Roughly equal numbers of male and female mice were used for each

experimental group, except for Myh11-creERT2Ednrafl mice (the Myh11-
creERT2 transgene is inserted into the Y chromosome, thus, all animals used
for this line of experiments were male). Phenotypically wild-type (WT)
controls included tamoxifen treated and untreated cre+ and cre− animals.
Littermate controls were used wherever possible. Animals were randomly
assigned to experimental groups. Before experiments were performed, it was
established that animals with pre-existing abnormal eye phenotypes (e.g.,
displaced pupil, cataracts) would be excluded from the study. All procedures
were conducted by an observer masked to genotype and condition.

Tamoxifen treatment and animal procedures
At 6 weeks of age or older, animals were intraperitoneally injected with
125mg/kg tamoxifen (Sigma, T5648) dissolved in corn oil at a concentra-
tion of 20mg/mL once per day for five consecutive days. Experiments were
conducted no earlier than 7 days after the last tamoxifen dose to allow for
recombination of floxed alleles and degeneration of endogenous protein.
Intravitreal injections and fluorescein angiography were performed as
previously described [44]. EDN1 (Sigma, E7764) was dissolved in sterile PBS
at a concentration of 500 μM. As previously performed, 2 μL of 500 μM
EDN1 dissolved in sterile PBS was intravitreally injected into one eye.
Sterile PBS was injected into the contralateral eye as a volume-matched
vehicle control.

Tissue processing, immunofluorescence, and cell
quantification
Tissue processing, immunostaining, and cell quantification were performed
as previously described [44] using the following primary antibodies: rabbit
anti-cCASP3 (R&D Systems, AF835, 1:1000), rabbit anti-RBPMS (GeneTex,
GTX118619, 1:250), guinea pig anti-RBPMS (PhosphoSolutions, 1832-
RBPMS, 1:250), goat anti-SOX2 (Santa Cruz, sc-17320, 1:200), goat anti-
CD31 (R&D Systems, AF3628, 1:1000), and chicken anti-GFAP (Abcam,
ab4674, 1:500).

DATA AVAILABILITY
The datasets used in the current study are available from the corresponding author
on reasonable request.
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