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RESEARCH ARTICLE Open Access

Transcriptional profiling predicts running
promotes cerebrovascular remodeling in
young but not midlife mice
Kate E. Foley1,2, Hongtian Stanley Yang1, Leah C. Graham1 and Gareth R. Howell1,2,3*

Abstract

Background: The incidence of dementia and cognitive decline is increasing with no therapy or cure. One of the
reasons treatment remains elusive is because there are various pathologies that contribute to age-related cognitive
decline. Specifically, with Alzheimer’s disease, targeting to reduce amyloid beta plaques and phosphorylated tau
aggregates in clinical trials has not yielded results to slow symptomology, suggesting a new approach is needed.
Interestingly, exercise has been proposed as a potential therapeutic intervention to improve brain health and
reduce the risk for dementia, however the benefits throughout aging are not well understood.

Results: To better understand the effects of exercise, we preformed transcriptional profiling on young (1–2 months)
and midlife (12 months) C57BL/6 J (B6) male mice after 12 weeks of voluntary running. Data was compared to age-
matched sedentary controls. Interestingly, the midlife running group naturally broke into two cohorts based on
distance ran - either running a lot and more intensely (high runners) or running less and less intensely (low
runners). Midlife high runners had lower LDL cholesterol as well as lower adiposity (%fat) compared to sedentary,
than midlife low runners compared to sedentary suggesting more intense running lowered systemic markers of risk
for age-related diseases including dementias. Differential gene analysis of transcriptional profiles generated from the
cortex and hippocampus showed thousands of differentially expressed (DE) genes when comparing young runners
to sedentary controls. However, only a few hundred genes were DE comparing either midlife high runners or
midlife low runners to midlife sedentary controls. This indicates that, in our study, the effects of running are
reduced through aging. Gene set enrichment analyses identified enrichment of genes involved in extracellular
matrix (ECM), vascular remodeling and angiogenesis in young runners but not midlife runners. These genes are
known to be expressed in multiple vascular-related cell types including astrocytes, endothelial cells, pericytes and
smooth muscle cells.

Conclusions: Taken together these results suggest running may best serve as a preventative measure to reduce
risk for cerebrovascular decline. Ultimately, this work shows that exercise may be more effective to prevent
dementia if introduced at younger ages.

Keywords: Running, Exercise, Genomics, Cerebrovasculature, Extracellular matrix, Angiogenesis, Midlife, Vascular
compromise, Endothelial cells, Basement membrane
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Background
With an aging population, the impact of age-related cog-
nitive impairment is increasing [1–4]. Cognitive impair-
ment can involve many symptoms, including memory
loss, newfound difficulties with language, and inability to
make every-day decisions [5]. Further, the incidence of
many dementias for which aging is the major risk factor
is increasing. For example, Alzheimer’s Disease (AD),
with approximately 5.4 million people affected in the
2016, is expected to increase to over 13 million in the
next few years [6]. The majority of clinical trials for AD
therapeutics have focused on reducing hallmark patholo-
gies such as amyloid beta accumulation and tau tangles.
However, these pathologies do not always correlate to
cognitive function, and therefore these therapeutic tar-
gets may not rescue the symptoms that ultimately bur-
den the patient [7, 8]. Currently, despite numerous
preclinical studies and clinical trials, there are no therap-
ies for cognitive decline.
Non-pharmacological interventions have been pro-

posed as alternatives to pharmacological treatments to
prolong brain health – reducing risk for age-related cog-
nitive decline and dementias. Obesity and physical in-
activity increase risk for cognitive decline and dementia,
suggesting that interventions such as diet and exercise
can mitigate risk [9]. Exercise has positive effects, not
just improving systemic health, but also cerebral health
through increases in cerebral plasticity, neurogenesis, as
well as hippocampal and cortical volume [10, 11]. Exer-
cise earlier in life correlated with reduced cognitive im-
pairment with age [12]. The cerebral benefits of exercise
may arise through the induction of brain derived neuro-
tropic factor (BDNF), which triggers neuronal prolifera-
tion in the dentate gyrus [13]. A recent study has also
explored the use of running, as well as an AAV-based
gene therapy to increase neuronal proliferation and sur-
vival, in a mouse model of AD [14]. Viral-induced
neurogenesis alone did not benefit cognition as well as
running did, suggesting that running also promotes non-
neuronal changes that improve cognition. Therefore, the
full spectrum of processes by which running promotes
brain health and reduces risk for dementias remains un-
clear. Furthermore, given that many such studies are
performed in young mice, it remains unknown whether
the beneficial effects of running persist through multiple
life stages.
Here, we chose an unbiased transcriptional profiling ap-

proach to better understand the effects of running on over-
all brain health. To date, an extensive evaluation of the
transcriptome of the brain in response to running across
ages has not been assessed. RNA sequencing was per-
formed on the cortex and hippocampus from young and
middle aged (midlife) C57BL/6 J (B6) male mice that were
provided running wheels for 12 weeks. Transcriptional

profiles were compared to aged-matched sedentary con-
trols. Within the midlife running cohort, half the mice ran
markedly faster and farther (high runners) than the other
half (low runners). This provided natural variation in our
midlife running dataset and allowed us to also interrogate
how the intensity of running impacted systemic health as
well as transcriptional profiles in the brain. The young co-
hort did not exhibit such variation in their voluntary exer-
cise. Transcriptomes of young running mice showed
considerably more differentially expressed (DE) genes com-
pared to either low-running or high-running midlife co-
horts. Gene set enrichment analyses revealed enrichment of
genes in pathways implicated in vascular remodeling in
young, but not midlife mice.

Results
Voluntary running distances at midlife showed a bimodal
distribution
To understand the molecular changes in the brain in
response to voluntary running, running wheels were
provided to young (1–2 month old, mo) and midlife (12
mo) C57BL/6 J (B6) male mice for 12 weeks. Age-
matched sedentary controls had no access to a running
wheel (Fig. 1a). To quantify running, wheel rotations per
minute were assessed overnight, when mice are most
active, for at least five nights during the last week of the
experiment. These data were used as an estimate for the
overall running performed during the 12 weeks.
Although there was some variation between average
wheel rotations per night in the young cohort, five of six
mice averaged over 10,000 rotations per night. Of the 12
midlife running mice however, half averaged fewer than
10,000 rotations per night deemed ‘Low Runners’ (gray),
and half averaged greater than 10,000 rotations per
night, deemed ‘High Runners’ (black) (Fig. 1b). Of the
minutes active, the high running cohort ran faster (aver-
age rotations per minute of active minutes) than the low
running cohort (Fig. 1c). Direct comparison of speed
and distance between midlife low and high runners
revealed significant differences (p < 0.001) (Fig. 1d,
Additional file 1: Figure S1A). This was not due to
dominance in group housing (Additional file 9: Table
S1). High runners ran a similar distance (on average,
greater than 10,000 rotations per night) to young
runners. Additionally, midlife high runners spent
more time running compared to midlife low runners
(Additional file 1: Figure S1B). High runners also
were quantified to have run at 100 rotations per mi-
nute, while the low runners did not show this ability
(Additional file 1: Figure S1C). Young sedentary mice
gained more weight over the course of the experi-
ment than young running mice (Fig. 1e, f). There was
no significant difference in weight from the start of
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the experiment to the end between midlife running
and midlife sedentary mice (Fig. 1f, Additional file 1:
Figure S1D). To better understand body composition
in the midlife cohort, mice were subjected to NMR a
week before harvest to assess fat and lean mass per-
centages. Midlife high runners showed a significant
decrease in fat mass (g) reflected by a corresponding

decrease in adiposity (%fat) (Additional file 1: Figure
S2A, S2B, S2D). Lean muscle mass was not different
among the groups but the midlife high running co-
hort had a higher percent lean muscle mass compared
to low running and sedentary cohorts, presumably
due to the lower body weight of the high runners
(Additional file 1: Figure S2C, S2E). This indicates

Fig. 1 Voluntary Running at young and midlife reveals natural variation in running intensity. a Experimental strategy of running mice. Young
mice were given access to voluntary running wheels for 12 weeks starting at 1–2 months of age and ending at 4–5 months of age. Midlife mice
were given access to wheels for 12 weeks starting at 12 months of age and ending at 15months of age. b Average wheel rotations per night
showed dichotomous response of midlife running. Midlife mice that ran below 10,000 rotations per night (red line), were deemed ‘Low’ (grey).
Midlife mice that ran above 10,000 rotations per night, deemed ‘High’ (black). c Graph of distance vs speed showed differences between low and
high running groups; all midlife high runners trended faster and farther than midlife low runners. d Midlife running speed between low and high
runner groups showed a significant difference (p < 0.001). e Weight over the course of running experiment. f Change in weight of each cohort
from start to end of the experiment (p < 0.001)
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that the weight composition was more favorable (high
lean muscle percentage, low fat percentage) in the
high runners compared to the other midlife mice.
To assess whether running during midlife altered

metabolic indicators of health in the blood, we mea-
sured cholesterol composition, non-fasted glucose, tri-
glycerides, and non-esterified fatty acids (NEFA)
levels. Total cholesterol was significantly reduced in
young runners compared to age-matched sedentary
controls (Fig. 2a). Midlife high runners also showed a
significantly lower total cholesterol profile compared
to midlife sedentary controls, which could be attrib-
uted to the decrease in LDL cholesterol (Fig. 2a-c).
HDL cholesterol remained unchanged with running
(Fig. 2c). Non-fasted glucose levels were not signifi-
cantly different, although there was trend towards
lower blood glucose in running compared to seden-
tary mice at both ages (Fig. 2d). Triglycerides and
NEFA were reduced by running at a young age, but
this effect was not seen in the midlife cohort (Fig. 2e,
f). Taken together, there was a significant shift to-
wards a healthier body composition and blood profile
in midlife high runners compared to low runners.
Further, systemic health benefits such as levels of
total cholesterol, including LDL, can be altered at
midlife due to more intense running.

Young running affects transcriptional signatures more
robustly than midlife running
To assess transcriptional changes in the brain after running at
two different ages, RNA-seq was performed on hippocampus
and cortex – vulnerable regions in age-related cognitive de-
cline and dementia (Additional file 1: Figures S3 and S4). Dif-
ferentially expressed (DE) genes (FDR < 0.05) were identified
by comparing (i) young running to young sedentary, (ii) mid-
life high runners to midlife sedentary, and (iii) midlife low
runners compared to midlife sedentary (Additional file 2:
Table S2, Additional file 3: Table S3, Additional file 4: Table
S4, Additional file 5: Table S5, Additional file 6: Table S6,
Additional file 7: Table S7 and Additional file 8: Table S8,
Additional file 1: Figure S5, see Methods). In the cortex, there
were 1252 DE genes (742 upregulated, 510 downregulated)
when comparing young runners to young sedentary mice
(Fig. 3a, b). However, there were only 214 DE genes (70 up-
regulated, 144 downregulated) in the midlife high runners
compared to midlife sedentary, and 67 DE genes (20 upregu-
lated and 47 downregulated) comparing midlife low runners
to midlife sedentary (Fig. 3b). Hippocampal analysis revealed
similar results to the cortex. In young mice there were 2026
DE genes (1498 upregulated, 528 downregulated) in the
young runners compared to young sedentary (Fig. 3f, g). In
midlife mice, there were 271 DE genes (87 upregulated, 184
downregulated) comparing midlife high runners to midlife

Fig. 2 Lipid profiling of the blood showed ability to alter cholesterol composition in midlife. a Significant difference in total cholesterol plasma
concentration at harvest in young runners and between midlife high runners to midlife sedentary mice (young *p = 0.0124, midlife *p = 0.0282).
b No significant difference in High Density Lipoprotein (HDL) plasma concentration between runners and sedentary mice. c Significant difference
in Low Density Lipoprotein (LDL) plasma concentration between midlife high runners and midlife sedentary mice (*p = 0.0489). d No change in
non-fasted glucose plasma concentration across all cohorts. e Significant decrease in in plasma triglyceride between young run and young
sedentary concentration (*p = 0.0151). f Significant reduction in Non-Esterified Fatty Acid (NEFA) plasma concentrations between young run and
young sedentary cohorts (*p = 0.0374)
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sedentary controls, and 172 DE genes (80 upregulated, 92
downregulated) comparing midlife low runners to midlife
sedentary controls (Fig. 3g). These results show that transcrip-
tionally, running at a young age has a far greater effect on the
number of DE genes than at midlife.

Extracellular matrix-related genes are altered in young
but not midlife runners
Next, we sought to identify which pathways and genes
were significantly altered by running at a young age, but
showed no difference at midlife. We first analyzed

Fig. 3 RNA-seq analysis identified ECM-related enrichment in both the cortex and hippocampus of young runners. a Cortical region (purple) used
for RNA-seq. b Number of DE genes (FDR < 0.05) found in the cortex of the young runners compared to young sedentary (‘Young Run’), midlife
low runners compared to midlife sedentary (‘Low Run’), and midlife high runners compared to midlife sedentary (‘High Run’) (FDR < 0.05). c IPA
canonical pathway analysis showed enriched ‘Hepatic Fibrosis’ and ‘GP6 Signaling Pathway’ in the cortex of young run compared to young
sedentary, however not significant in midlife comparisons. d KEGG pathway enrichment analysis in the cortex for young run compared to young
sedentary (FDR < 0.05). e GO term enrichment analysis in the cortex for young run compared to young sedentary (FDR < 0.05). f Hippocampal
region (green) used for RNA-seq tissue submission. g Number of DE genes (FDR < 0.05) found in the hippocampus of the young runners
compared to young sedentary (‘Young Run’), midlife low runners compared to midlife sedentary (‘Low Run’), and midlife high runners compared
to midlife sedentary (‘High Run’) (FDR < 0.05). h IPA canonical pathway analysis showed enriched ‘Hepatic Fibrosis’ and ‘GP6 Signaling Pathway’ in
the hippocampus of young run compared to young sedentary, however not significant in midlife comparisons. i KEGG pathway enrichment
analysis in the hippocampus for young run compared to young sedentary (FDR < 0.05). j GO term enrichment analysis in the hippocampus for
young run compared to young sedentary (FDR < 0.05)
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transcriptional data through Ingenuity Pathway Analysis
(IPA) canonical pathway analysis. DE genes comparing
young runners to young sedentary controls were enriched
for canonical pathway terms ‘Hepatic Fibrosis’, ‘GP6 Sig-
naling’, and ‘Circadian Rhythm Signaling’ in the cortex
and hippocampus. (Fig. 3c, h). These pathways were not
enriched in the midlife data. ‘Hepatic Fibrosis’ and ‘GP6
Signaling Pathway’ terms contain extracellular matrix
(ECM)-related genes, such as collagens and laminins.
KEGG pathway analysis further identified ‘ECM-receptor
Interaction’ and ‘Focal Adhesion’ in the cortex and hippo-
campus, which substantiated the significant changes to
the ECM (Fig. 3d, i). There were no KEGG terms enriched
in either the cortex or hippocampus for the midlife low
runners. Only the KEGG pathway ‘Malaria’ was enriched
in the cortex of midlife high runners. Genes DE in the
‘Malaria’ pathway are primarily hemoglobin-related genes
suggesting a potential change in oxygenation in high run-
ners. Only the KEGG pathway ‘ECM-receptor Interaction’
was enriched in the hippocampus of midlife high runners. Of
the ten DE genes in ‘ECM-receptor Interaction’ were seven
collagen or laminin genes (Col24a1 (FDR=2.39e-6, FC=−
2.17), Col6a3 (FDR=0.026,FC=− 1.38), Col6a2 (FDR=
0.0032,FC= -1.45), Col6a5 (FDR=0.00029,FC=− 1.72),
Col6a1 (FDR=0.00025,FC=− 1.52), Col5a1 (FDR=9.03e-8,
FC=− 1.75), and Lamc2 (FDR= 6.85e-8,FC=− 2.07)) which
were all downregulated. This suggests that more intense run-
ning at midlife can influence ECM-related genes, but poten-
tially not in a positive way.
GO terms are a way of categorizing DE genes into func-

tional biological groups. GO term analysis of the DE genes
from the cortex and hippocampus data from young runners
showed enrichment for ‘ECM Organization’ and ‘Cell Ad-
hesion’ (Fig. 3e, j). Interestingly, vascular remodeling-
related terms were significantly enriched in the cortex of
young runners, including terms such as ‘blood vessel re-
modeling’, ‘ECM Organization’, ‘Angiogenesis’, and ‘Cell
Adhesion’ (Fig. 3e). None of these terms were enriched in
the midlife data, irrespective of distance ran. However, one
GO term, ‘Cellular Oxidant Detoxification’, which com-
prised mainly hemoglobin component genes, was enriched
in both low and high runners in the hippocampus but only
in the high runners of the cortex at midlife. These data sug-
gest there is an overall change in ECM composition or
organization due to running at a young age that is not
reflected to the same degree at midlife. (Fig. 3).

Running upregulates genes related to vascular
remodeling in young but not midlife mice
IPA revealed ‘Hepatic Fibrosis’ and ‘GP6 Signaling’ as
significantly enriched canonical pathways in both the
cortex and the hippocampus (Fig. 3). These pathways
contain many collagens and laminins that comprise the
basement membrane component of the blood brain

barrier that is important for maintaining brain health
(Fig. 4a). The majority of genes in ‘GP6 Signaling’ path-
way were upregulated in the young runners in both the
cortex and hippocampus but were not DE in either mid-
life high or low runners (Fig. 4b-f).
GO term analysis identified enrichment of ‘ECM

organization’, ‘Blood Vessel Remodeling’ and ‘Angiogen-
esis’ in the cortex (Fig. 5a). These terms were significantly
enriched in young mice but not in midlife mice. Of these
vascular terms, ‘Angiogenesis’ contained 32 genes (26 up-
regulated, 6 downregulated) (Fig. 5a, b). At least six of the
upregulated DE genes are implicated in Vegf-induced
angiogenesis (Mmp14 (FDR = 1.23e-8, FC = 1.75), Vegfa
(FDR = 0.038, FC = 1.20), Kdr (FDR = .0011, FC = 1.41),
Flt1 (FDR = .031, FC = 1.21), Dll4 (FDR = 0.037, FC =
1.59), Notch1 (FDR = 0.002, FC = 1.29)) (Fig. 5c, d) [15].
However, of the 26 DE genes that were significantly up-
regulated in young runners compared to young sedentary,
only two genes (Col8a1, Hif3a) were significantly DE in
midlife high runners when compared to midlife sedentary
controls (Fig. 5c-d).

Running activates genes in multiple cerebrovascular-
related cell types
Finally, we determined whether specific cell types were
more dramatically affected by young but not midlife run-
ning. This might provide insight into which cell type(s)
are no longer responding to running in midlife mice. A
sample of basement membrane and angiogenesis genes
DE in young, but not midlife, running datasets were
cross referenced to two cell-type specific datasets – the
Brain RNA seq and a single cell RNA-seq dataset fo-
cused on cerebrovascular associated cells [16, 17]. First,
we evaluated Col4 and laminin genes that were DE in
young runners. As expected, the majority of the genes
were expressed by cerebrovascular-related cells such as
astrocytes and endothelial cells and not other cells in
brain such as neurons, oligodendrocytes and microglia
(Additional file 10: Table S9). However, many genes
were expressed by different subsets of vascular-related
cells such as Col4a1 (endothelial cells, pericytes,
vascular smooth muscle cells and fibroblasts) Lamb2
(astrocytes, endothelial cells, pericytes, vascular
smooth muscle cells and fibroblasts) and Lama5 (as-
trocytes, endothelial cells and vascular smooth muscle
cells) (Additional file 1: Figure S6). Second, we
assessed cell type specific expression of angiogenesis
genes. Upstream components of the angiogenesis
pathway were mainly expressed by astrocytes, includ-
ing Mmp14 and Vegfa (Fig. 6a, b). Downstream com-
ponents of the angiogenesis pathway were primarily
expressed by endothelial cells (Kdr, Flt1, Dll4,
Notch1). Therefore, ECM- and angiogenesis-related
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genes affected by running are expressed in multiple
cell types relevant to the cerebrovasculature. The re-
sults are summarized in Fig. 7.

Discussion
Here, we assessed B6 male mice at two ages, young and
midlife, to better understand the effects of running on

Fig. 4 General upregulation of Collagens and Laminins due to young running with an attenuated response at midlife. a Number of significant
collagen, laminin or other genes in young ‘Hepatic Fibrosis’ and ‘GP6 Signaling’ pathways in the cortex and hippocampus. b Fold changes of
genes enriching for ‘GP6 Signaling’ in the cortex. c Fold changes of genes enriching for ‘GP6 Signaling’ in the hippocampus. d Heatmap of Col4s
and laminins in the cortex and hippocampus that are significant in young run compared to young sedentary, while not significant in midlife
comparisons. e Examples of significant cortical genes found in (d) showing attenuated responses in midlife cohort contrasts compared to young.
f Examples of significant hippocampal genes found in (d) showing various responses in midlife cohort contrasts compared to young
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the aging brain. Our data show early indication that
intervention of running may not be as beneficial to the
cerebrovasculature in midlife as it is at a young age.
While systemic health (lipid profile, body composition)
is improved by running at midlife, transcriptional profil-
ing of the hippocampus and cortex showed fewer genes
impacted during midlife, specifically in the cerebrovascu-
lature. This suggests there may be a reduced responsive-
ness to running by specific cerebrovascular cell types in
these brain regions with age. Therapies or interventions
during midlife may require different approaches than
preventative measures in young, more responsive indi-
viduals. In this study, half the midlife cohort (high run-
ners) ran as much as the young cohort, whereas the
other half ran far less (low runners, Fig. 1). Interestingly,
this did not drastically affect the transcriptional profiles
(Fig. 3). We would have anticipated that running further
and faster would have been more beneficial at midlife,

however, our results show a mitigated transcriptional re-
sponse in all midlife runners compared to young
runners.
Previous exercise studies in mouse models have pri-

marily focused on the benefits of exercise in young ro-
dents. Findings from these experiments are promising,
showing that running can reduce amyloid plaque devel-
opment, induce neurogenesis, reduce infarct volume,
and improve cognition [14, 18–20]. However, the brain
during development and early adult life is considered
more plastic than in later life, which indicates that ther-
apies found to be beneficial in young, may not properly
translate to aged trials [2, 21].
We took an unbiased approach to identify transcrip-

tional changes in two vulnerable brain regions (cortex
and hippocampus) as a result of running. We show that
many of the transcriptional changes as a result of run-
ning were to genes relevant to the cerebrovasculature.

Fig. 5 Angiogenesis genes are significantly enriched in young runners but not midlife runners. a GO terms enriched for vascular remodeling in
the cortex show general upregulation. b Fold changes for DE genes enriched in the Angiogenesis term in the cortex. c Heatmap comparison
between angiogenesis gene fold changes in the cortex in the young contrast (all significant) and midlife contrasts. d Examples of significant
cortical angiogenesis genes found in (c) showing various responses in midlife cohort contrasts compared to young
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Particularly, we highlight genes involved in basement
membrane composition (particularly collagens and lami-
nins) that are upregulated in young mice due to running

that were not affected by running at midlife. Similarly,
genes in the angiogenesis pathway (e.g. Mmp14, Vegfa,
Kdr, Flt1, Dll4, and Notch1) showed induction by

Fig. 6 Angiogenesis genes are primarily expressed in astrocytes and endothelial cells. a. Expression of Mmp14 is primarily produced in pericytes
and astrocytes. b Expression of Vegfa is primarily produced by astrocytes. c Expression of Flt1 is primarily produced in endothelial cells. d
Expression of Dll4 is primarily produced in endothelial cells. Cell type specific expression reproduced from Zheng et al. (left), and Vanlandewijck
and He et al. (right)
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Fig. 7 Running young is more effective than running at midlife. a Depiction of transcriptional changes occurring in a young mouse due to
running, including upregulation of collagens and laminins from astrocytes, pericytes and endothelial cells, as well as induction of the VEGFA-KDR-
DLL4 angiogenesis pathway. b Depiction of molecular changes occurring in midlife mice due to running, including downregulation of collagens
and laminins, and a trend for induction of early angiogenesis genes from astrocytes (MMP14, VEGFA) but an attenuated downstream
angiogenesis response (FLT-1, DLL4, NOTCH1) in endothelial cells
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running in young but not midlife mice [15]. These tran-
scriptional data suggest that the benefits of exercise to
the cerebrovasculature declines with age, increasing the
need for a greater understanding of midlife exercise as
an intervention to improve cerebrovascular health [22].
Previous studies have focused on the neuroprotective

benefits of exercise. In Choi et al., of the 5XFAD mice (a
model relevant to AD) that were exercised, half were
categorized as showing increased neurogenesis while the
other half did not show this effect, potentially due to the
amount run [14]. Additionally, it was shown that viral-
induced neurogenesis was not enough to rescue cogni-
tive decline, while exercise-induced neurogenesis was
able to sufficiently improve cognitive results [14]. This
finding indicates that running is providing additional
benefits to substantiate neurogenesis mediated improve-
ments in cognition. Based on the results of our study,
we predict that in Choi et al. there were running-
induced improvements to the cerebrovasculature which
would provide better clearance of amyloid and better
maintenance of neuronal health resulting in improved
cognition [14]. It is known that the development of the
neuronal and vasculature systems is strongly linked, with
growth occurring simultaneously because neurons require
vascular support for oxygen and nutrients. This further
supports the need for cerebrovascular improvement to ac-
company adult therapy-induced neurogenesis [23]. If
neurogenesis and angiogenesis become uncoupled, this
may cause stress to neurons, reduced cerebral blood flow,
and a disruption to neurovascular coupling. Therefore,
when considering midlife interventions to cognitive de-
cline and dementia it is important to consider both neur-
onal and cerebrovascular health.
Our study assessed both distance and intensity of run-

ning. Although most previous studies tend to only report
time allotted for running, a few studies included more
detailed breakdown of running data. For instance, in one
study, young (3mo) and aged (19mo) male mice were
analyzed for total distance over a day and had no signifi-
cant difference with 3.0 ± 0.12miles/day for young, and
2.4 ± 0.06 miles/day for old [11]. The mice used in this
study had an average of 1.32 ± 0.69 miles/12 h for young
mice, 0.28 ± 0.13 miles/12 h for midlife low runners, and
2.00 ± 0.50 miles/12 h for midlife high runners. Results
from this study found that there was a distinct loss of
vascular plasticity in older mice, substantiating the find-
ings from our study [11]. Another study in young
C57BL/6 J female mice explored differential gene expres-
sion in the striatum after 16 days of running in conjunc-
tion with voluntary ethanol consumption. The female
running mice revealed 1305 DE genes due to wheel run-
ning, compared to our 1252 in DE genes in the young
running cortex, and 2026 DE genes in the young run-
ning hippocampus [24]. Running distances cannot be

compared as Darlington et al. used a vertical, external to
the cage, larger diameter, running wheel design, dissimi-
lar to the one used in our study [24].
One limitation of our study is that we used healthy

wild-type male mice to assess the effects of exercise at
two different ages. In our study, the effects of exercise
were greater in young compared to midlife male mice.
Future studies are necessary to understand the sex-
specific effects of running, and how these differences
might play a role in exercise-induced transcriptional dif-
ferences. Additionally, this study did not extend past
transcriptional profiling. Further assessment of vascular
density and functional testing of responsiveness through
cerebral blood flow (CBF) measurements would aid in
our understanding of how running improves cerebrovas-
cular health through aging. Moreover, C57BL/6 J do not
show cognitive decline at these early and midlife ages, so
cognition was not assessed. Determining the relationship
between cerebrovascular health and cognition are still
required. It is also not clear how running impacts cere-
brovascular health in humans and animal models predis-
posed to vascular damage and dementia through genetic
or environmental risk factors.
Due to the increasing recognition of a vascular contri-

bution to dementia symptomology, it would be pertinent
to know if running alleviates these effects of vascular risk
in genetically predisposed mice at different ages. For ex-
ample, the ε4 allele of apolipoprotein E (APOEε4), the
greatest risk factor for late-onset AD and Vascular De-
mentia, is associated with early cerebrovascular decline
in both mice and humans [25, 26]. This is proposed to
be due to a lack of binding of APOEε4 to the low-density
lipoprotein receptor related protein 1 (LRP1) leading to
an increase in MMP9 and a breakdown of basement
membrane proteins and endothelial cell tight junctions
[25]. Therefore, when evaluating running as a potential
intervention, it is imperative to understand whether ben-
efits will be seen across multiple dementia risk geno-
types. Although these experiments are challenging to
perform in human populations, they can be readily per-
formed in mouse models.
Due to the heterogeneity of dementia pathology, it is pos-

sible that the typical approach to treating dementias, is too
narrow in scope, only able to alleviate the burden of a small
subset of dementia cases. Only recently has the American
Heart Association acknowledged the prevalence of Vascular
Contributions to Cognitive Impairment and Dementia
(VCID), explaining that cerebral infarcts are frequent and
common with age, including in patients with diagnosed
with AD [27]. We hypothesize that exercise is key in identi-
fying new pathways, specifically those related to cerebrovas-
cular health, that may help a broader population of
dementia patients. In summary, our research and others
show that exercise benefits cerebral health by improving
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multiple systems including the cerebrovasculature. How-
ever, the benefits of exercise appear to decline with age, fur-
ther supporting that combinatorial approaches are required
to prevent cognitive decline and dementias.

Conclusions
This study identifies genes and pathways induced by vol-
untary running in young mice. These genes include those
involved in cerebrovascular remodeling such as basement
membrane production and angiogenesis. In addition, these
data propose a mechanism that running at middle life, in-
dependent of running intensity, is less effective at activat-
ing genes relevant to cerebrovascular remodeling. These
data suggest renewed efforts are needed to identify those
at risk of cerebrovascular decline as early as possible, and
that preventative strategies that involve exercise to en-
hance cerebrovascular health maybe more effective in
younger compared to older individuals.

Methods
Mouse strains
All experiments involving mice were conducted with ap-
proval and accordance described in the Guide for the
Care and Use of Laboratory Animals of the National In-
stitutes of Health. All experiments were approved by the
Animal Care and Use Committee at The Jackson La-
boratory. All mice used in this study were male C57BL/
6 J (B6, stock number JR00664, The Jackson Laboratory).
Mice were kept in a 12/12-h light/dark cycle and fed ad
libitum 6% kcal fat standard mouse chow. A total of 48
mice were used in this study.

Exercise by voluntary running
Group housed mice (two-three per pen) were provided
access to low profile saucer wheels (Innovive Inc) 24 h a
day for 12 weeks. Sedentary mice did not have access to
running wheels. In the first experiment, young mice
were housed from wean (1-2mo) until the end of the ex-
periment (4-5mo). Two cohorts of mice were used to
evaluate running at the young timepoint; the first group
(n = 6 per activity) had weights, running tracked, and
blood lipid profiling, while the second group (n = 5 per
activity) had RNA-seq run on the cortex and hippocam-
pus. In the second experiment (n = 12 for running and
sedentary), mice were aged without wheel access, and at
12mo were provided running wheels. For both experi-
ments, in the final week, mice were individually housed
and given a trackable low-profile running wheel (Med
Associates Inc.) to estimate the running behavior for the
previous 11 weeks of the experiment. Running wheel ro-
tations were measured in 1-min bins to allow for dis-
tance traveled (sum of rotations) calculated per mouse
each night. Average rotations were calculated per mouse
for each tracked night. Average speed while active was

calculated by isolating the minute intervals where activ-
ity was measured, and averaging the number of rotations
for the minutes active. Percent of time at each speed was
calculated by totaling the number of minute bins that
mice ran between 0, 1–30 rotations, 31–70 rotations,
71–100 rotations and 100+ rotations and dividing by the
total amount of minutes tracked.

Nuclear magnetic resonance (NMR) imaging
The midlife running cohort was subjected to NMR im-
aging 1 week before harvest. Weight was taken and mice
were briefly placed into a Plexiglas tube 2.5 in. by 8 in.
which was then subjected to NMR (EchoMRI, Houston,
TX). Magnetic field was measured by a 5-gauss magnet.
Measurements included weight, lean muscle mass, fat
mass, and water composition. Adiposity was calculated
by (fat/body weight) × 100. Percentage lean muscle mass
was calculated by (lean muscle mass/body weight) × 100.

Harvesting, tissue preparation and blood chemistry
All mice were euthanized by intraperitoneal injection of
a lethal dose of Ketamine (100 mg/ml)/Xylazine (20 mg/
ml) and blood was collected at harvest through approved
cardiac puncture protocols. Mice were perfused intracar-
dially with 1X PBS. Brains were carefully dissected and
hemisected sagittally. Hippocampus (Hippo) and cortex
(Ctx), were then carefully separated and snap frozen in
solid CO2 for RNA-sequencing. Blood was also collected
in K2 EDTA (1.0 mg) microtainer tubes (BD) at harvest
(non-fasted) and kept at room temperature for at least
30 min to prevent clotting and then centrifuged at 22 °C
for 15 min at 5000 rpm. Plasma was carefully collected
and aliquoted. Plasma was characterized on the Beck-
man Coulter AU680 chemistry analyzer.

RNA and protein extraction, library construction and RNA
sequencing
RNA sequencing (RNA-seq) was performed by The Jackson
Laboratory Genome Technologies Core. RNA extraction in-
volved homogenization with TRIzol (Invitrogen) as previ-
ously described [28]. RNA was isolated and purified using
the QIAGEN miRNeasy mini extraction kit (QIAGEN) in
accordance with manufacturer’s instructions. RNA quality
was measured via the Bioanalyzer 2100 (Agilent Technolo-
gies) and poly(A) RNA-seq sequencing libraries were com-
piled by TruSeq RNA Sample preparation kit v2 (Illumina).
Quantification was performed using qPCR (Kapa Biosys-
tems). RNA-seq was performed on the HiSeq 4000 platform
(Illumina) for 2x100bp reads for a total of 45 million reads
according to the manufacturer’s instructions.

RNA-seq quality control and gene set enrichment
Quality control for each sample was completed using
NGSQCToolkit v2.3 which removed adaptors and
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trimmed low quality bases (Phred< 30) [29]. To quantify
gene expression of the trimmed reads, we used RSEM
v1.2.12 which uses Bowtie2 v2.2.0 for alignment of these
reads [30]. We used mouse genome mm-10 based upon
the B6 reference genome. Differential gene expression
(DGE) analysis was completed on the hippocampus and
cortex separately, using EdgeR 3.20.9 [31]. A second
quality control step included filtering out genes with less
than at least 1 read per million for more than one sam-
ple. Normalization of trimmed mean of M values
(TMM) was performed and quasi-likelihood F-test was
used to attain DGE. Differentially Expressed genes (DE
genes) were identified by comparing (i) young running
to young sedentary, (ii) midlife low running to midlife
sedentary, and (iii) midlife high running to midlife sed-
entary for each tissue (cortex or hippocampus). Genes
were considered DE if the False Discovery Rate was less
than 0.05 (FDR < 0.05). Given the young and midlife
running were run at separate times it was not possible
to directly compare the young data to the midlife data.
Ingenuity Pathway Analysis (IPA) was used to identify

enriched canonical pathways for each DE gene list. Add-
itionally, Database for Annotation, Visualization and In-
tegrated Discovery (DAVID, v6.8) was used to identify
enrichment of Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) pathways and Gene Ontology (GO)
terms, with the background gene sets being all trimmed
normalized genes for each comparison. Enriched KEGG
pathways and GO terms with FDR < 0.05 were consid-
ered significant. Cancer-related pathways were excluded
from visualization.

Statistical analyses
Details of statistical analyses of RNA-seq data are pro-
vided above. All other statistical analyses were per-
formed in GraphPad Prism v7.0a. Body composition and
lipid profiling results between the young running and
young sedentary cohorts utilized an unpaired t-test.
Body composition and lipid profiling results between
midlife sedentary, low runners, and high runners were
compared with a one-way ANOVA.
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