769 research outputs found

    Random Hydrophilic-Hydrophobic Copolymers

    Full text link
    We study a single statistical amphiphilic copolymer chain AB in a selective solvent (e.g.water). Two situations are considered. In the annealed case, hydrophilic (A) and hydrophobic (B) monomers are at local chemical equilibrium and both the fraction of A monomers and their location along the chain can vary, whereas in the quenched case (which is relevant to proteins), the chemical sequence along the chain is fixed by synthesis. In both cases, the physical behaviour depends on the average hydrophobicity of the polymer chain. For a strongly hydrophobic chain (large fraction of B), we find an ordinary continuous θ\theta collapse, with a large conformational entropy in the collapsed phase. For a weakly hydrophobic, or a hydrophilic chain, there is an unusual first-order collapse transition. In particular, for the case of Gaussian disorder, this discontinuous transition is driven by a change of sign of the third virial coefficient. The entropy of this collapsed phase is strongly reduced with respect to the θ\theta collapsed phase. Email contact: [email protected]: Saclay-T94/077 Email: [email protected]

    Smoothening of Depinning Transitions for Directed Polymers with Quenched Disorder

    Full text link
    We consider disordered models of pinning of directed polymers on a defect line, including (1+1)-dimensional interface wetting models, disordered Poland--Scheraga models of DNA denaturation and other (1+d)-dimensional polymers in interaction with columnar defects. We consider also random copolymers at a selective interface. These models are known to have a (de)pinning transition at some critical line in the phase diagram. In this work we prove that, as soon as disorder is present, the transition is at least of second order: the free energy is differentiable at the critical line, and the order parameter (contact fraction) vanishes continuously at the transition. On the other hand, it is known that the corresponding non-disordered models can have a first order (de)pinning transition, with a jump in the order parameter. Our results confirm predictions based on the Harris criterion.Comment: 4 pages, 1 figure. Version 2: references added, minor changes made. To appear on Phys. Rev. Let

    Delocalization transition of the selective interface model: distribution of pseudo-critical temperatures

    Full text link
    According to recent progress in the finite size scaling theory of critical disordered systems, the nature of the phase transition is reflected in the distribution of pseudo-critical temperatures Tc(i,L)T_c(i,L) over the ensemble of samples (i)(i) of size LL. In this paper, we apply this analysis to the delocalization transition of an heteropolymeric chain at a selective fluid-fluid interface. The width ΔTc(L)\Delta T_c(L) and the shift [Tc()Tcav(L)][T_c(\infty)-T_c^{av}(L)] are found to decay with the same exponent L1/νRL^{-1/\nu_{R}}, where 1/νR0.261/\nu_{R} \sim 0.26. The distribution of pseudo-critical temperatures Tc(i,L)T_c(i,L) is clearly asymmetric, and is well fitted by a generalized Gumbel distribution of parameter m3m \sim 3. We also consider the free energy distribution, which can also be fitted by a generalized Gumbel distribution with a temperature dependent parameter, of order m0.7m \sim 0.7 in the critical region. Finally, the disorder averaged number of contacts with the interface scales at TcT_c like LρL^{\rho} with ρ0.261/νR\rho \sim 0.26 \sim 1/\nu_R .Comment: 9 pages,6 figure

    Numerical study of the disordered Poland-Scheraga model of DNA denaturation

    Full text link
    We numerically study the binary disordered Poland-Scheraga model of DNA denaturation, in the regime where the pure model displays a first order transition (loop exponent c=2.15>2c=2.15>2). We use a Fixman-Freire scheme for the entropy of loops and consider chain length up to N=4105N=4 \cdot 10^5, with averages over 10410^4 samples. We present in parallel the results of various observables for two boundary conditions, namely bound-bound (bb) and bound-unbound (bu), because they present very different finite-size behaviors, both in the pure case and in the disordered case. Our main conclusion is that the transition remains first order in the disordered case: in the (bu) case, the disorder averaged energy and contact densities present crossings for different values of NN without rescaling. In addition, we obtain that these disorder averaged observables do not satisfy finite size scaling, as a consequence of strong sample to sample fluctuations of the pseudo-critical temperature. For a given sample, we propose a procedure to identify its pseudo-critical temperature, and show that this sample then obeys first order transition finite size scaling behavior. Finally, we obtain that the disorder averaged critical loop distribution is still governed by P(l)1/lcP(l) \sim 1/l^c in the regime lNl \ll N, as in the pure case.Comment: 12 pages, 13 figures. Revised versio

    Directed polymer in a random medium of dimension 1+1 and 1+3: weights statistics in the low-temperature phase

    Full text link
    We consider the low-temperature T<TcT<T_c disorder-dominated phase of the directed polymer in a random potentiel in dimension 1+1 (where Tc=T_c=\infty) and 1+3 (where Tc<T_c<\infty). To characterize the localization properties of the polymer of length LL, we analyse the statistics of the weights wL(r)w_L(\vec r) of the last monomer as follows. We numerically compute the probability distributions P1(w)P_1(w) of the maximal weight wLmax=maxr[wL(r)]w_L^{max}= max_{\vec r} [w_L(\vec r)], the probability distribution Π(Y2)\Pi(Y_2) of the parameter Y2(L)=rwL2(r)Y_2(L)= \sum_{\vec r} w_L^2(\vec r) as well as the average values of the higher order moments Yk(L)=rwLk(r)Y_k(L)= \sum_{\vec r} w_L^k(\vec r). We find that there exists a temperature Tgap<TcT_{gap}<T_c such that (i) for T<TgapT<T_{gap}, the distributions P1(w)P_1(w) and Π(Y2)\Pi(Y_2) present the characteristic Derrida-Flyvbjerg singularities at w=1/nw=1/n and Y2=1/nY_2=1/n for n=1,2..n=1,2... In particular, there exists a temperature-dependent exponent μ(T)\mu(T) that governs the main singularities P1(w)(1w)μ(T)1P_1(w) \sim (1-w)^{\mu(T)-1} and Π(Y2)(1Y2)μ(T)1\Pi(Y_2) \sim (1-Y_2)^{\mu(T)-1} as well as the power-law decay of the moments Yk(i)ˉ1/kμ(T) \bar{Y_k(i)} \sim 1/k^{\mu(T)}. The exponent μ(T)\mu(T) grows from the value μ(T=0)=0\mu(T=0)=0 up to μ(Tgap)2\mu(T_{gap}) \sim 2. (ii) for Tgap<T<TcT_{gap}<T<T_c, the distribution P1(w)P_1(w) vanishes at some value w0(T)<1w_0(T)<1, and accordingly the moments Yk(i)ˉ\bar{Y_k(i)} decay exponentially as (w0(T))k(w_0(T))^k in kk. The histograms of spatial correlations also display Derrida-Flyvbjerg singularities for T<TgapT<T_{gap}. Both below and above TgapT_{gap}, the study of typical and averaged correlations is in full agreement with the droplet scaling theory.Comment: 13 pages, 29 figure

    Effects of tidal-forcing variations on tidal properties along a narrow convergent estuary

    Get PDF
    A 1D analytical framework is implemented in a narrow convergent estuary that is 78 km in length (the Guadiana, Southern Iberia) to evaluate the tidal dynamics along the channel, including the effects of neap-spring amplitude variations at the mouth. The close match between the observations (damping from the mouth to ∼ 30 km, shoaling upstream) and outputs from semi-closed channel solutions indicates that the M2 tide is reflected at the estuary head. The model is used to determine the contribution of reflection to the dynamics of the propagating wave. This contribution is mainly confined to the upper one third of the estuary. The relatively constant mean wave height along the channel (< 10% variations) partly results from reflection effects that also modify significantly the wave celerity and the phase difference between tidal velocity and elevation (contradicting the definition of an “ideal” estuary). Furthermore, from the mouth to ∼ 50 km, the variable friction experienced by the incident wave at neap and spring tides produces wave shoaling and damping, respectively. As a result, the wave celerity is largest at neap tide along this lower reach, although the mean water level is highest in spring. Overall, the presented analytical framework is useful for describing the main tidal properties along estuaries considering various forcings (amplitude, period) at the estuary mouth and the proposed method could be applicable to other estuaries with small tidal amplitude to depth ratio and negligible river discharge.info:eu-repo/semantics/publishedVersio

    Statistics of first-passage times in disordered systems using backward master equations and their exact renormalization rules

    Full text link
    We consider the non-equilibrium dynamics of disordered systems as defined by a master equation involving transition rates between configurations (detailed balance is not assumed). To compute the important dynamical time scales in finite-size systems without simulating the actual time evolution which can be extremely slow, we propose to focus on first-passage times that satisfy 'backward master equations'. Upon the iterative elimination of configurations, we obtain the exact renormalization rules that can be followed numerically. To test this approach, we study the statistics of some first-passage times for two disordered models : (i) for the random walk in a two-dimensional self-affine random potential of Hurst exponent HH, we focus on the first exit time from a square of size L×LL \times L if one starts at the square center. (ii) for the dynamics of the ferromagnetic Sherrington-Kirkpatrick model of NN spins, we consider the first passage time tft_f to zero-magnetization when starting from a fully magnetized configuration. Besides the expected linear growth of the averaged barrier lntfˉN\bar{\ln t_{f}} \sim N, we find that the rescaled distribution of the barrier (lntf)(\ln t_{f}) decays as euηe^{- u^{\eta}} for large uu with a tail exponent of order η1.72\eta \simeq 1.72. This value can be simply interpreted in terms of rare events if the sample-to-sample fluctuation exponent for the barrier is ψwidth=1/3\psi_{width}=1/3.Comment: 8 pages, 4 figure

    Adsorption of a random heteropolymer at a potential well revisited: location of transition point and design of sequences

    Full text link
    The adsorption of an ideal heteropolymer loop at a potential point well is investigated within the frameworks of a standard random matrix theory. On the basis of semi-analytical/semi-numerical approach the histogram of transition points for the ensemble of quenched heteropolymer structures with bimodal symmetric distribution of types of chain's links is constructed. It is shown that the sequences having the transition points in the tail of the histogram display the correlations between nearest-neighbor monomers.Comment: 11 pages (revtex), 3 figure

    Proportion of various types of thyroid disorders among newborns with congenital hypothyroidism and normally located gland: A regional cohort study

    Get PDF
    Objective To determine the proportion of the various types of thyroid disorders among newborns detected by the neonatal TSH screening programme, with a normally located thyroid gland.Patients and methods Of the 882 575 infants screened in our centre between 1981 and 2002, 85 infants with a normally located gland had persistent elevation of serum TSH values (an incidence of 1/10 383). Six of these 85 patients were lost to follow-up and were therefore excluded from the study. During follow-up, patients were classified as having permanent or transient hypothyroidism.Results Among the 79 patients included in the study, transient (n = 30, 38% of cases) and permanent (n = 49, 62% of cases) congenital hypothyroidism (CH) was demonstrated during the follow-up at the age of 0.7 +/- 0.6 years and 2.6 +/- 1.8 years (P &lt; 0.0001), respectively. The proportion of premature births was significantly higher in the group with transient CH (57%) than in the group with permanent CH (2%) (P &lt; 0.0001). A history of iatrogenic iodine overload was identified during the neonatal period in 69% of transient cases. Among permanent CH cases (n = 49), patients were classified as having a goitre (n = 27, 55% of cases), a normal sized and shaped thyroid gland (n = 14, 29% of cases) or a hypoplastic gland (n = 8, 16% of cases). The latter patients demonstrated global thyroid hypoplasia (n = 3), a right hemithyroid (n = 2), hypoplasia of the left lobe (n = 2), or asymmetry in the location of the two lobes (n = 1). Patients with a normal sized and shaped thyroid gland showed a significantly less severe form of hypothyroidism than those with a goitre or a hypoplastic thyroid gland (P &lt; 0.0002). Among permanent CH cases, those with a goitre (n = 27) had an iodine organification defect (n = 10), Pendred syndrome (n = 1), a defect of thyroglobulin synthesis (n = 8), or a defect of sodium iodine symporter (n = 1), and in seven patients no aetiology could be determined. Among permanent cases with a normal sized and shaped thyroid gland (n = 14), a specific aetiology was found in only one patient (pseudohypoparathyroidism) and two patients had Down's syndrome. Among those with a globally hypoplastic gland, a TSH receptor gene mutation was found in two patients.Conclusions A precise description of the phenotype can enhance our understanding of various forms of neonatal hypothyroidism as well as their prevalence and management. It also helps to identify cases of congenital hypothyroidism of unknown aetiology, which will need to be investigated in collaboration with molecular biologists

    Non equilibrium dynamics of disordered systems : understanding the broad continuum of relevant time scales via a strong-disorder RG in configuration space

    Full text link
    We show that an appropriate description of the non-equilibrium dynamics of disordered systems is obtained through a strong disorder renormalization procedure in {\it configuration space}, that we define for any master equation with transitions rates W(CC)W ({\cal C} \to {\cal C}') between configurations. The idea is to eliminate iteratively the configuration with the highest exit rate Wout(C)=CW(CC)W_{out} ({\cal C})= \sum_{{\cal C}'} W ({\cal C} \to {\cal C}') to obtain renormalized transition rates between the remaining configurations. The multiplicative structure of the new generated transition rates suggests that, for a very broad class of disordered systems, the distribution of renormalized exit barriers defined as Bout(C)lnWout(C)B_{out} ({\cal C}) \equiv - \ln W_{out}({\cal C}) will become broader and broader upon iteration, so that the strong disorder renormalization procedure should become asymptotically exact at large time scales. We have checked numerically this scenario for the non-equilibrium dynamics of a directed polymer in a two dimensional random medium.Comment: v2=final versio
    corecore