27,187 research outputs found

    Timing performance of phased-locked loops in optical pulse position modulation communication systems

    Get PDF
    An optical digital communication system requires that an accurate clock signal be available at the receiver for proper synchronization with the transmitted signal. Phase synchronization is especially critical in M-ary pulse position modulation (PPM) systems where the optimum decision scheme is an energy detector which compares the energy in each of M time slots to decide which of M possible words was sent. Timing errors cause energy spillover into adjacent time slots (a form of intersymbol interference) so that only a portion of the signal energy may be attributed to the correct time slot. This effect decreases the effective signal, increases the effective noise, and increases the probability of error. A timing subsystem for a satellite-to-satellite optical PPM communication link is simulated. The receiver employs direct photodetection, preprocessing of the detected signal, and a phase-locked loop for timing synchronization. The variance of the relative phase error is examined under varying signal strength conditions as an indication of loop performance, and simulation results are compared to theoretical calculations

    Theoretical and lidar studies of the density response of the mesospheric sodium layer to gravity wave perturbations

    Get PDF
    The density response of atmospheric layers to gravity waves is developed in two forms, an exact solution and a perturbation series solution. The degree of nonlinearity in the layer density response is described by the series solution whereas the exact solution gives insight into the nature of the responses. Density perturbation in an atmospheric layer are shown to be substantially greater than the atmospheric density perturbation associated with the propagation of a gravity wave. Because of the density gradients present in atmospheric layers, interesting effects were observed such as a phase reversal in the linear layer response which occurs near the layer peak. Once the layer response is understood, the sodium layer can be used as a tracer of atmospheric wave motions. A two dimensional digital signal processing technique was developed. Both spatial and temporal filtering are utilized to enhance the resolution by decreasing shot noise by more han 10 dB. Many of the features associated with a layer density response to gravity waves were observed in high resolution density profiles of the mesospheric sodium layer. These include nonlinearities as well as the phase reversal in the linear layer response

    Daytime lidar measurements of tidal winds in the mesospheric sodium layer at Urbana, Illinois

    Get PDF
    For more than 15 years lidar systems have been used to study the chemistry and dynamics of the mesospheric sodium layer. Because the layer is an excellent tracer of atmospheric wave motions, sodium lidar has proven to be particularly useful for studying the influence of gravity waves and tides on mesospheric dynamics. These waves, which originate in the troposphere and stratosphere, propagate through the mesosphere and dissipate their energy near the mesopause making important contributions to the momentum and turbulence budget in this region of the atmosphere. Recently, the sodium lidar was modified for daytime operation so that wave phenomena and chemical effects could be monitored throughout the complete diurnal cycle. The results of continuous 24 hour lidar observations of the sodium layer structure are presented alond with measurement of the semidiurnal tidal winds

    The effects of atmospheric refraction on the accuracy of laser ranging systems

    Get PDF
    Correction formulas derived by Saastamoinen and Marini, and the ray traces through the refractivity profiles all assume a spherically symmetric refractivity profile. The errors introduced by this assumption were investigated by ray tracing through three-dimensional profiles. The results of this investigation indicate that the difference between ray traces through the spherically symmetric and three-dimensional profiles is approximately three centimeters at 10 deg and decreases to less than one half of a centimeter at 80 deg. If the accuracy desired in future laser ranging systems is less than a few centimeters, Saastamoinen and Marini's formulas must be altered to account for the fact that the refractivity profile is not spherically symmetric

    High pressure rotary piston coal feeder

    Get PDF
    This feeder concept uniquely combines the functions of solids feeding, metering, and pressurization into one compact system. Success with the rotary-piston concept would provide a lower-cost alternative to lock-hopper systems. The design of the feeder is presented, with special emphasis on the difficult problem of seal design. Initial tests will be to check seal performance. Subsequent tests will evaluate solids-feeding ability

    Operating manual for the RRL 8 channel data logger

    Get PDF
    A data collection device which takes measurements from external sensors at user specified time intervals is described. Three sensor ports are dedicated to temperature, air pressure, and dew point. Five general purpose sensor ports are provided. The user specifies when the measurements are recorded as well as when the information is read or stored in a minicomputer or a paper tape

    Striped Magnetic Ground State of the Kagome Lattice in Fe4Si2Sn7O16

    Get PDF
    We have experimentally identified a new magnetic ground state for the kagome lattice, in the perfectly hexagonal Fe2+ (3d6, S = 2) compound Fe4Si2Sn7O16. Representational symmetry analysis of neutron diffraction data shows that below T_N = 3.5 K, the spins on 2/3 of the magnetic ions order into canted antiferromagnetic chains, separated by the remaining 1/3 which are geometrically frustrated and show no long-range order down to at least T = 0.1 K. Moessbauer spectroscopy confirms that there is no static order on the latter 1/3 of the magnetic ions - i.e., they are in a liquid-like rather than a frozen state - down to at least 1.65 K. A heavily Mn-doped sample Fe1.45Mn2.55Si2Sn7O16 has the same magnetic structure. Although the propagation vector q = (0, 1/2 , 1/2 ) breaks hexagonal symmetry, we see no evidence for magnetostriction in the form of a lattice distortion within the resolution of our data. We discuss the relationship to partially frustrated magnetic order on the pyrochlore lattice of Gd2Ti2O7, and to theoretical models that predict symmetry breaking ground states for perfect kagome lattices.Comment: 5 pages, 5 figure
    • …
    corecore