76 research outputs found

    A model-independent comparison of the variability of accreting neutron stars and black holes

    Get PDF
    We use Rossi X-ray Timing Explorer observations to conduct a population study of the timing properties of accretion-powered neutron star Low Mass X-ray Binaries (LMXBs), following a model-independent approach that was originally applied to black hole systems. The ratios of integrated power in four equally spaced Fourier frequency bands allow power spectral shapes to be parameterised with two `power colour' values, providing a simple way of tracking the evolution in timing properties across observations. We show that neutron star LMXBs follow a remarkably similar power spectral evolution to black hole LMXBs, confirming that the broadband noise variability seen in both types of system has a common origin in the accretion flow. Both neutron stars and black holes follow a similar clear track in the power colour-colour diagram as they transition from the hard through soft states. Quantifying the position on this oval track using a single parameter, the power-spectral `hue', we find that the transition in X-ray spectral shape occurs at the same hue for both neutron star and black hole systems. The power colours of Z sources map on to those of soft state black holes, while those of atoll sources correspond to all spectral states. There is no clear dependence of power colour on neutron star spin, or on whether the neutron star is clearly magnetised (determined by ms X-ray pulsations).Comment: 21 pages, 19 figures, accepted for publication in MNRA

    Multi-dimensional population modelling using frbpoppy: magnetars can produce the observed Fast Radio Burst sky

    Get PDF
    Fast Radio Bursts (FRBs) are energetic, short, bright transients that occur frequently over the entire radio sky. The observational challenges following from their fleeting, generally one-off nature have prevented identification of the underlying sources producing the bursts. As the population of detected FRBs grows, the observed distributions of brightness, pulse width and dispersion measure now begin to take shape. Meaningful direct interpretation of these distributions is, however, made impossible by the selection effects that telescope and search pipelines invariably imprint on each FRB survey. Here we show that multi-dimensional FRB population synthesis can find a single, self-consistent population of FRB sources that can reproduce the real-life results of the major ongoing FRB surveys. This means that individual observed distributions can now be combined to derive the properties of the intrinsic FRB source population. The characteristics of our best-fit model for one-off FRBs agree with a population of magnetars. We extrapolate this model and predict the number of FRBs future surveys will find. For surveys that have commenced, the method we present here can already determine the composition of the FRB source class, and potentially even its subpopulations.Comment: 12 pages, 4 figures, accepted by Astronomy & Astrophysic

    Captain Baby Bunting : Of The Rocking-Horse Brigade

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/1148/thumbnail.jp

    Correlating spectral and timing properties in the evolving jet of the micro blazar MAXI J1836-194

    Get PDF
    During outbursts, the observational properties of black hole X-ray binaries (BHXBs) vary on timescales of days to months. These relatively short timescales make these systems ideal laboratories to probe the coupling between accreting material and outflowing jets as a the accretion rate varies. In particular, the origin of the hard X-ray emission is poorly understood and highly debated. This spectral component, which has a power-law shape, is due to Comptonisation of photons near the black hole, but it is unclear whether it originates in the accretion flow itself, or at the base of the jet, or possibly the interface region between them. In this paper we explore the disk-jet connection by modelling the multi-wavelength emission of MAXI J1836-194 during its 2011 outburst. We combine radio through X-ray spectra, X-ray timing information, and a robust joint-fitting method to better isolate the jet's physical properties. Our results demonstrate that the jet base can produce power-law hard X-ray emission in this system/outburst, provided that its base is fairly compact and that the temperatures of the emitting electrons are sub-relativistic. Because of energetic considerations, our model favours mildly pair-loaded jets carrying at least 20 pairs per proton. Finally, we find that the properties of the X-ray power spectrum are correlated with the jet properties, suggesting that an underlying physical process regulates both.Comment: 17 pages, 10 figures, accepted for publication on MNRA

    Correlating spectral and timing properties in the evolving jet of the microblazar MAXI J1836-194

    Get PDF
    During outbursts, the observational properties of black hole X-ray binaries vary on time-scales of days to months. These relatively short time-scales make these systems ideal laboratories to probe the coupling between accreting material and outflowing jets as the accretion rate varies. In particular, the origin of the hard X-ray emission is poorly understood and highly debated. This spectral component, which has a power-law shape, is due to Comptonization of photons near the black hole, but it is unclear whether it originates in the accretion flow itself, or at the base of the jet, or possibly the interface region between them. In this paper, we explore the disc-jet connection by modelling the multiwavelength emission of MAXI J1836-194 during its 2011 outburst. We combine radio through X-ray spectra, X-ray timing information, and a robust joint-fitting method to better isolate the jet\u27s physical properties. Our results demonstrate that the jet base can produce power-law hard X-ray emission in this system/outburst, provided that its base is fairly compact and that the temperatures of the emitting electrons are subrelativistic. Because of energetic considerations, our model favours mildly pair-loaded jets carrying at least 20 pairs per proton. Finally, we find that the properties of the X-ray power spectrum are correlated with the jet properties, suggesting that an underlying physical process regulates both

    A bright, high rotation-measure FRB that skewers the M33 halo

    Get PDF
    We report the detection of a bright fast radio burst, FRB\,191108, with Apertif on the Westerbork Synthesis Radio Telescope (WSRT). The interferometer allows us to localise the FRB to a narrow 5\arcsec\times7\arcmin ellipse by employing both multibeam information within the Apertif phased-array feed (PAF) beam pattern, and across different tied-array beams. The resulting sight line passes close to Local Group galaxy M33, with an impact parameter of only 18\,kpc with respect to the core. It also traverses the much larger circumgalactic medium of M31, the Andromeda Galaxy. We find that the shared plasma of the Local Group galaxies could contribute ∌\sim10\% of its dispersion measure of 588\,pc\,cm−3^{-3}. FRB\,191108 has a Faraday rotation measure of +474\,± 3\pm\,3\,rad\,m−2^{-2}, which is too large to be explained by either the Milky Way or the intergalactic medium. Based on the more moderate RMs of other extragalactic sources that traverse the halo of M33, we conclude that the dense magnetised plasma resides in the host galaxy. The FRB exhibits frequency structure on two scales, one that is consistent with quenched Galactic scintillation and broader spectral structure with ΔΜ≈40\Delta\nu\approx40\,MHz. If the latter is due to scattering in the shared M33/M31 CGM, our results constrain the Local Group plasma environment. We found no accompanying persistent radio sources in the Apertif imaging survey data
    • 

    corecore