90 research outputs found

    Autumn and Winter Breeding Records for the American Robin, Turdus migratorius

    Get PDF
    We report autumn and winter breeding records for the American Robin (Turdus migratorius). We located a nest on the campus of the University of Columbia at Missouri, USA, active 12 to 15 October 1999. This late nesting record prompted us to consult the Cornell Lab of Ornithology’s Nest Record Program and Bird Studies Canada’s Project NestWatch. Of the 11 113 American Robin nest records in Cornell’s database, 15 were active in September and three were active later than September. Of the over 23 000 nest records available from Bird Studies Canada one was active in September and one in October. All four of the latest nests contained nestlings and were active on 3 October 1964 in Massachusetts, 13 October 1932 in Manitoba, 18 November 1964 in West Virginia, and 8 January 1966 in Ohio. Eight of the ten nests monitored until outcome could be determined fledged young successfully

    A guide to nestling development and aging in altricial passerines

    Get PDF
    Nestling growth and development studies have been a topic of interest for a greater part of the last century (Sutton 1935, Walkinshaw 1948) and continue to be of interest today. This is not surprising since studies on nestling growth can provide a wealth of biological information that has larger implications for avian management and conservation. Despite this history of studying nestling development, basic information is still limited or absent for many species. Many questions remain unanswered, and contradictory conclusions are often found in the literature (Starck and Ricklefs 1998a). Therefore, much information on aging and development can still be gained from studying the development patterns of similar species and from comparative studies, across avian orders (Minea et al. 1982, Saunders and Hansen 1989, Carsson and Hörnfeldt 1993). Additionally, nestling growth studies can yield insight into the effects of different nesting strategies on productivity (O’Connor 1978), as well as the impacts of parental effort and environmental variables on fitness (Ross 1980, Ricklefs and Peters 1981, Magrath 1991). Since low reproductive success may play a significant role in the declines of many North American passerines (Sherry and Holmes 1992, Ballard et al. 2003), a better understanding of the factors that influence reproductive success is a vital component of avian conservation (Martin 1992). Data on nestling aging can be used to improve nest survival estimates (Dinsmore 2002, Nur et al. 2004), providing information that can be used to more precisely age nests (Pinkowski 1975, Podlesack and Blem 2002), (Jones and Geupel 2007). Indeed, the relatively short time period young spend developing in the nest is a critical part of a bird’s life cycle and a nestling’s developmental path can affect its survival to independence, its survival as an adult, and its future reproductive success

    Establishing the Breeding Provenance of a Temperate-Wintering North American Passerine, the Golden-Crowned Sparrow, Using Light-Level Geolocation

    Get PDF
    The migratory biology and connectivity of passerines remains poorly known, even for those that move primarily within the temperate zone. We used light-level geolocators to describe the migratory geography of a North American temperate migrant passerine. From February to March of 2010, we attached geolocator tags to 33 Golden-crowned Sparrows (Zonotrichia atricapilla) wintering on the central coast of California, USA, and recovered four tags the following winter (October to December 2010). We used a Bayesian state-space model to estimate the most likely breeding locations. All four birds spent the breeding season on the coast of the Gulf of Alaska. These locations spanned approximately 1200 kilometers, and none of the individuals bred in the same location. Speed of migration was nearly twice as fast during spring than fall. The return rate of birds tagged the previous season (33%) was similar to that of control birds (39%), but comparing return rates was complicated because 7 of 11 returning birds had lost their tags. For birds that we recaptured before spring migration, we found no significant difference in mass change between tagged and control birds. Our results provide insight into the previously-unknown breeding provenance of a wintering population of Golden-crowned Sparrows and provide more evidence of the contributions that light-level geolocation can make to our understanding of the migratory geography of small passerines

    Private lands habitat programs benefit California's native birds

    Full text link
    To address the loss of wetlands and riparian forests in California, private lands habitat programs are available through U.S. federal and state government agencies to help growers, ranchers and other private landowners create and enhance wildlife habitat. The programs provide financial and technical assistance for implementing conservation practices. To evaluate the benefits of these programs for wildlife, we examined bird use of private wetlands, postharvest flooded croplands and riparian forests enrolled in habitat programs in the Central Valley and North Coast regions of California. We found that private Central Valley wetlands supported 181 bird species during the breeding season. During fall migration, postharvest flooded croplands supported wetland-dependent species and a higher density of shorebirds than did semipermanent wetlands. At the riparian sites, bird species richness increased after restoration. These results demonstrated that the programs provided habitat for the species they were designed to protect; a variety of resident and migratory bird species used the habitats, and many special status species were recorded at the sites

    A Climate Change Vulnerability Assessment of California's At-Risk Birds

    Get PDF
    Conservationists must develop new strategies and adapt existing tools to address the consequences of anthropogenic climate change. To support statewide climate change adaptation, we developed a framework for assessing climate change vulnerability of California's at-risk birds and integrating it into the existing California Bird Species of Special Concern list. We defined climate vulnerability as the amount of evidence that climate change will negatively impact a population. We quantified climate vulnerability by scoring sensitivity (intrinsic characteristics of an organism that make it vulnerable) and exposure (the magnitude of climate change expected) for each taxon. Using the combined sensitivity and exposure scores as an index, we ranked 358 avian taxa, and classified 128 as vulnerable to climate change. Birds associated with wetlands had the largest representation on the list relative to other habitat groups. Of the 29 state or federally listed taxa, 21 were also classified as climate vulnerable, further raising their conservation concern. Integrating climate vulnerability and California's Bird Species of Special Concern list resulted in the addition of five taxa and an increase in priority rank for ten. Our process illustrates a simple, immediate action that can be taken to inform climate change adaptation strategies for wildlife

    News, Notes, Comments

    No full text
    • …
    corecore