179 research outputs found
Sharp interface limit for a phase field model in structural optimization
We formulate a general shape and topology optimization problem in structural
optimization by using a phase field approach. This problem is considered in
view of well-posedness and we derive optimality conditions. We relate the
diffuse interface problem to a perimeter penalized sharp interface shape
optimization problem in the sense of -convergence of the reduced
objective functional. Additionally, convergence of the equations of the first
variation can be shown. The limit equations can also be derived directly from
the problem in the sharp interface setting. Numerical computations demonstrate
that the approach can be applied for complex structural optimization problems
On a Cahn--Hilliard--Darcy system for tumour growth with solution dependent source terms
We study the existence of weak solutions to a mixture model for tumour growth
that consists of a Cahn--Hilliard--Darcy system coupled with an elliptic
reaction-diffusion equation. The Darcy law gives rise to an elliptic equation
for the pressure that is coupled to the convective Cahn--Hilliard equation
through convective and source terms. Both Dirichlet and Robin boundary
conditions are considered for the pressure variable, which allows for the
source terms to be dependent on the solution variables.Comment: 18 pages, changed proof from fixed point argument to Galerkin
approximatio
Structure preserving discretisations of gradient flows for axisymmetric two-phase biomembranes
The form and evolution of multi-phase biomembranes is of fundamental importance in order to understand living systems. In order to describe these membranes, we consider a mathematical model based on a Canham--Helfrich--Evans two-phase elastic energy, which will lead to fourth order geometric evolution problems involving highly nonlinear boundary conditions. We develop a parametric finite element method in an axisymmetric setting. Using a variational approach, it is possible to derive weak formulations for the highly nonlinear boundary value problems such that energy decay laws, as well as conservation properties, hold for spatially discretised problems. We will prove these properties and show that the fully discretised schemes are well-posed. Finally, several numerical computations demonstrate that the numerical method can be used to compute complex, experimentally observed two-phase biomembranes
A stable numerical method for the dynamics of fluidic membranes
We develop a finite element scheme to approximate the dynamics of two and three dimensional fluidic membranes in Navier–Stokes flow. Local inextensibility of the membrane is ensured by solving a tangential Navier–Stokes equation, taking surface viscosity effects of Boussinesq–Scriven type into account. In our approach the bulk and surface degrees of freedom are discretized independently, which leads to an unfitted finite element approximation of the underlying free boundary problem. Bending elastic forces resulting from an elastic membrane energy are discretized using an approximation introduced by Dziuk (2008). The obtained numerical scheme can be shown to be stable and to have good mesh properties. Finally, the evolution of membrane shapes is studied numerically in different flow situations in two and three space dimensions. The numerical results demonstrate the robustness of the method, and it is observed that the conservation properties are fulfilled to a high precision
Parametric approximation of surface clusters driven by isotropic and anisotropic surface energies
Published versio
Long time existence of solutions to an elastic flow of networks
The L2-gradient flow of the elastic energy of networks leads to a Willmore type evolution law with non-trivial nonlinear boundary conditions. We show local in time existence and uniqueness for this elastic flow of networks in a Sobolev space setting under natural boundary conditions. In addition, we show a regularisation property and geometric existence and uniqueness. The main result is a long time existence result using energy methods
- …