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Abstract

The form and evolution of multi-phase biomembranes is of fundamental impor-
tance in order to understand living systems. In order to describe these membranes,
we consider a mathematical model based on a Canham–Helfrich–Evans two-phase
elastic energy, which will lead to fourth order geometric evolution problems involv-
ing highly nonlinear boundary conditions. We develop a parametric finite element
method in an axisymmetric setting. Using a variational approach, it is possible to
derive weak formulations for the highly nonlinear boundary value problems such
that energy decay laws, as well as conservation properties, hold for spatially discre-
tised problems. We will prove these properties and show that the fully discretised
schemes are well-posed. Finally, several numerical computations demonstrate that
the numerical method can be used to compute complex, experimentally observed
two-phase biomembranes.

Key words. biomembranes, multi-phase Canham–Helfrich–Evans energy, Willmore
flow, parametric finite elements, stability, numerical simulations
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1 Introduction

Biomembranes and vesicles formed by lipid bilayers play a fundamental role in many liv-
ing systems, and synthesised artificial vesicles are used in pharmaceutical applications as
potential drug carriers. The basic structure of such membranes is a bilayer consisting of
phospholipids. As the thickness of these membranes is small, the membrane is typically
described as a hypersurface. It is well-known that the energy of these membranes can
be modelled with the help of a curvature elasticity theory, see Canham (1970); Helfrich
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(1973); Evans (1974); Seifert (1997). Curvature terms in the energy account for bend-
ing stresses, but biomembranes have no or little lateral shear stresses, which hence are
neglected in these elasticity models.

Often micro-domains (or rafts) are formed due to the clustering of certain molecules
within the membrane. This leads to multi-phase membranes with coexisting phases. It
is observed that the membrane can have a preferred curvature stemming, for example,
from an asymmetry within the bilayer. This so-called spontaneous curvature can depend
on the phase. Moreover, the bending rigidities appearing in the energy are typically
also phase-dependent. The simplest curvature energies involve the mean curvature, but
neglect the Gaussian curvature. For homogeneous biomembranes this is justified with
the help of topological arguments, as long as the Gaussian bending rigidity is constant,
and as long as the topology of the membrane does not change. However, for multi-phase
membranes the Gaussian bending rigidity is phase-dependent, and will thus influence
membrane shapes. A combination of the above phase-dependent properties can lead to a
multitude of different phenomena, including budding, fingering and fusion, see Baumgart
et al. (2003). In this paper, we consider a geometrical evolution law of gradient flow
type for two-phase biomembranes that decreases the governing energy. The energy we
consider takes elastic energy as well as line energy into account. Where appropriate,
the evolution will conserve volume enclosed by the membrane, as well as the areas of
the appearing phases. We will derive a stable numerical method in an axisymmetric
setting that is structure preserving, in the sense that a semidiscrete variant decreases
energy and, when applicable, also conserves volume and areas exactly. Axisymmetric
formulations numerically have the advantage that they are extremely efficient, and hence
they allow for a more detailed resolution of the shapes, in particular close to budding, for
example.

Based on the fundamental work of Jülicher and Lipowsky (1993, 1996) we now intro-
duce a generalised Canham–Helfrich–Evans energy for a two-phase biomembrane. The
energy is defined for a two-phase surface S = (S1,S2), consisting of two sufficiently smooth
surfaces Si, i = 1, 2, in R3, which have a common boundary γ that is assumed to be a
sufficiently smooth curve. In addition, it is assumed that S encloses a volume Ω(S). The
energy proposed by Jülicher and Lipowsky (1993, 1996) takes curvature effects, as well as
line energy effects, into account, and is given by

E(S) =
2∑
i=1

[
1
2
αi

∫
Si

(km,i − κi)
2 dH2 + αGi

∫
Si
kg,i dH2

]
+ ςH1(γ) . (1.1)

Here the constants αi ∈ R>0 and αGi ∈ R are the mean and the Gaussian bending rigidities
of the two phases, and the constants κi ∈ R are the spontaneous curvatures. Note that all
these quantities might attain different values in the two phases. Moreover, km,i and kg,i
denote the mean and the Gaussian curvature of Si, i = 1, 2, and ς is the energy density
of the interface, often called line tension. Finally, H2 and H1 are the surface and length
measures in R3.

For the attachment conditions on γ two cases have been considered in the literature,
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see Jülicher and Lipowsky (1996); Helmers (2011):

C0–case : γ = ∂S1 = ∂S2 , (1.2a)

C1–case : γ = ∂S1 = ∂S2 and ~nS1 = ~nS2 on γ , (1.2b)

where ~nSi denotes the outer unit normal of Si. Of course, in the case (1.2b) it also holds
that ~µ∂S1 = −~µ∂S2 , where ~µ∂Si denotes the outer unit conormal to Si on γ.

It is discussed in Barrett et al. (2018) that the contributions

2∑
i=1

[
1
2
αi

∫
Si
k2
m,i dH2 + αGi

∫
Si
kg,i dH2

]
to the energy (1.1) are nonnegative if

αGi ∈ [−2αi, 0] , i = 1, 2 .

In the C1–case, recall (1.2b), however, one can use the Gauss–Bonnet theorem, see (1.4)
below, to show that the energy (1.1), when restricted to a fixed topology, can be bounded
from below if αGi ≥ max{αG1 , αG2 } − 2αi for i = 1, 2, which will hold whenever

min{α1, α2} ≥ 1
2
|αG1 − αG2 | , (1.3)

see Nitsche (1993); Barrett et al. (2018) for details.

It is crucial for a numerical treatment that the Gaussian curvature term can be com-
puted efficiently in the discrete setting. In this context, a reformulation of the energy
using the Gauss–Bonnet theorem is important. In fact, the Gauss–Bonnet theorem yields∫

Si
kg,i dH2 = 2πm(Si) +

∫
∂Si

k∂Si,µ dH1 , (1.4)

where m(Si) ∈ Z denotes the Euler characteristic of Si and k∂Si,µ is the geodesic curvature
of ∂Si. Using this equality for the integrated Gaussian curvature, we can rewrite the
energy (1.1) as

E(S) =
2∑
i=1

[
1
2
αi

∫
Si

(km,i − κi)
2 dH2 + αGi

[∫
γ

k∂Si,µ dH1 + 2 πm(Si)
]]

+ ςH1(γ) .

(1.5)

We now need to compute the geodesic curvatures k∂Si,µ. In order to do so, we first
define the conormal, ~µ∂Si , to Si on γ to be

~µ∂Si = ±~nSi × ~ids on γ , i = 1, 2 , (1.6)

where ~id denotes the identity in R3 and s denotes arclength on the curve γ ⊂ R3, and the
sign in (1.6) is chosen so that ~µ∂Si points out of Si, i = 1, 2. It holds that

~idss = ~kγ = k∂Si,n ~nSi + k∂Si,µ ~µ∂Si on γ , i = 1, 2 , (1.7)
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where ~kγ is the curvature vector on γ, and where k∂Si,n is the normal curvature and k∂Si,µ
is the geodesic curvature of ∂Si, i = 1, 2.

In applications for biomembranes, cf. Jülicher and Lipowsky (1996); Tu (2013), the
surface areas of S1 and S2 need to stay constant during the evolution, as well as the
volume of the set Ω(S) enclosed by S. In this case one can consider the energy

Eλ(S) = E(S) + λV L3(Ω(S)) +
2∑
i=1

λA,iH2(Si) , (1.8)

where L3 denotes the Lebesgue measure in R3. Here λA,i are Lagrange multipliers for
the area constraints, which can be interpreted as a surface tension, and λV is a Lagrange
multiplier for the volume constraint, which might be interpreted as a pressure difference.

We now introduce the governing evolution equations that we consider in this paper.
We will consider the L2–gradient flow of the energy Eλ, leading to a time-dependent family
of surfaces S(t) and time-dependent Lagrange multipliers λV (t) and λA,i(t), i = 1, 2. This
will lead to an equation for the normal velocity of the surfaces Si, i = 1, 2, as well as to
equations on the curve γ. The reformulation (1.5) of the energy shows that a variation of
the energy, which only affects points away from γ, will not change the Gaussian curvature
part of the energy. This is reflected by the fact that, in the gradient flow formulation, the
normal velocities VSi on the surfaces Si, i = 1, 2, do not contain terms stemming from
the Gaussian curvature contribution to the energy. In fact, we have from Barrett et al.
(2018, (2.16)) that

VSi = −αi ∆Si km,i + 1
2
αi (km,i − κi)

2 km,i − αi (km,i − κi) |∇Si ~nSi |2 + λA,i km,i − λV
= −αi ∆Si km,i + 2αi (km,i − κi) kg,i −

[
1
2
αi (k

2
m,i − κ2

i )− λA,i
]
km,i − λV

on Si(t) , i = 1, 2 , (1.9)

where ∆Si and ∇Si denote the surface Laplacian and surface gradient on Si, respectively,
and where we have observed that |∇Si ~nSi |2 = k2

m,i − 2 kg,i, see e.g. Barrett et al. (2020,
Lemma 12(iv)).

However, the Gaussian curvature energy contributions have an effect on the boundary.
In the C0–junction case, for t ∈ [0, T ], the boundary conditions on γ(t) are given by

αi (km,i − κi) + αGi
~kγ . ~nSi = 0 , i = 1, 2 , (1.10a)

2∑
i=1

[
(αi (∇Si km,i) . ~µ∂Si − αGi (ti)s)~nSi − (1

2
αi (km,i − κi)

2 + αGi kg,i + λA,i) ~µ∂Si
]

+ ς ~kγ = ~0 , (1.10b)

see Barrett et al. (2018, (2.19)), where ti = −(~nSi)s . ~µ∂Si is the geodesic torsion of γ(t)
on Si(t). In case of a C1–junction, we have that ~nS = ~nS1 = ~nS2 and ~µ∂S = ~µ∂S2 = −~µ∂S1
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at the junction, and the governing equations on the curve γ(t) for t ∈ [0, T ] are

[αi (km,i − κi)]
2
1 + [αGi ]21

~kγ . ~nS = 0 , (1.11a)

[αi (∇Si km,i)]21 . ~µ∂S + ς ~kγ . ~nS − [αGi ]21 ts = 0 , (1.11b)

[−1
2
αi (km,i − κi)

2 + αi (km,i − κi) (km,i − ~kγ . ~nS)− λA,i]21 + [αGi ]21 t
2 + ς ~kγ . ~µS = 0 ,

(1.11c)

see Barrett et al. (2018, (2.20)), where [ai]
2
1 = a2− a1 denotes the jump of the quantity a

across γ(t), and where t = t2 = −t1.

For more basic information on the biophysics of vesicles and biomembranes we refer
to Seifert (1993). Two-component membranes are discussed in Lipowsky (1992); Jülicher
and Lipowsky (1993); Seifert (1993); Jülicher and Lipowsky (1996); Tu and Ou-Yang
(2004); Baumgart et al. (2005); Tu (2013); Yang et al. (2017); Sahebifard et al. (2017).

Many mathematical results are known on the problem of minimising the Willmore
and Helfrich functional, see Nitsche (1993); Marques and Neves (2014); Deckelnick et al.
(2017), and for the corresponding gradient flows, see Simonett (2001); Kuwert and Schätzle
(2002). However, problems involving the multi-phase Canham–Helfrich–Evans have not
been treated mathematically in much detail yet. We refer to Choksi et al. (2013); Helmers
(2013, 2015); Brazda et al. (2019) for first results. Available related results for the corre-
sponding gradient flow are restricted to boundary value problems for Willmore flow with
line tension, cf. Abels et al. (2016), and to the evolution of elastic flows with junctions,
see Garcke et al. (2019); Dall’Acqua et al. (2019).

Numerical approaches for the evolution of two-phase membranes often rely on phase
field methods, see Wang and Du (2008); Lowengrub et al. (2009); Elliott and Stinner
(2010a,b, 2013); Barrett et al. (2017). Cox and Lowengrub (2015) numerically studied
solutions for the shape equations for two-phase vesicles numerically and Barrett et al.
(2018) solved the gradient flow dynamics of two-phase biomembranes formulated in a
sharp interface setting numerically. A numerical method for the evolution of elastic flows
with junctions has been proposed in Barrett et al. (2012). In this paper, we will present
a parametric finite element method for the L2–gradient flow of (1.8) in an axisymmetric
setting. Throughout the paper, we will make extensive use of our recent work Barrett
et al. (2019e), in which the analogous gradient flow for a more general energy for a single
surface has been treated.

The outline of the paper is as follows. In Section 2 we derive the axisymmetric version
of the governing equations. For the finite element method it is important to derive a
weak formulation for the highly nonlinear problem. This is done in Section 3 using an
approach based on a Lagrangian method. In Section 4 a semidiscretisation is developed
which preserves important energy decay and conservation properties. In Section 5 we
analyze a fully discrete version of the method developed in the previous section and show
that the resulting equations are well-posed. Numerical results are given in Section 6 and
a comparison with the seminal experimental paper by Baumgart et al. (2003) is given.
Finally, in an Appendix, we show that the weak formulation introduced in Section 3 is
consistent with the strong formulation.
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~e1

~e2
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~e3

~e2

S1

S2

Figure 1: Sketch of Γi and Si, i = 1, 2, as well as the unit vectors ~e1, ~e2 and ~e3.

2 The axisymmetric setting

For the axisymmetric setting, we assume that ~xi(t) : I i → R≥0×R are parameterisations
of Γi(t), i = 1, 2, with I1 = (0, 1

2
) and I2 = (1

2
, 1), and such that ~x1(1

2
, t) = ~x2(1

2
, t) and

~xi(ρ, t) . ~e1 = 0 if and only if ρ ∈ ∂Ii \ {1
2
}, i = 1, 2, for all t ∈ [0, T ]. Throughout Γi(t)

represents the generating curve of a surface Si(t) that is axisymmetric with respect to the
x2–axis, see Figure 1. In particular, on defining

~Π3
3(r, z, θ) = (r cos θ, z, r sin θ)T for r ∈ R≥0 , z ∈ R , θ ∈ [0, 2 π]

and Π3
2(r, z) = {~Π3

3(r, z, θ) : θ ∈ [0, 2π)}, we have that

Si(t) =
⋃

(r,z)T∈Γi(t)

Π3
2(r, z) =

⋃
ρ∈Ii

Π3
2(~xi(ρ, t)) and γ(t) = Π3

2(~x1(1
2
, t)) = Π3

2(~x2(1
2
, t)) .

(2.1)

On assuming, for t ∈ [0, T ] and i = 1, 2, that

|[~xi]ρ| ≥ c0 > 0 ∀ ρ ∈ I i ,

we introduce the arclength s of the curves, i.e. ∂s = |[~xi]ρ|−1 ∂ρ in Ii, and set

~τi(ρ, t) = [~xi]s(ρ, t) =
[~xi]ρ(ρ, t)

|[~xi]ρ(ρ, t)|
and ~νi(ρ, t) = −[~τi(ρ, t)]

⊥ in I i , (2.2)

where (·)⊥ denotes a clockwise rotation by π
2
. Then the normal velocity VSi of Si(t) in

the direction ~nSi is given by

VSi = [~xi]t(ρ, t) . ~νi(ρ, t) on Π3
2(~xi(ρ, t)) ⊂ Si(t) ∀ ρ ∈ I i , t ∈ [0, T ] , i = 1, 2 .

For the curvature κi of Γi(t) it holds that

κi ~νi = ~κi = [~τi]s =
1

|[~xi]ρ|

[
[~xi]ρ
|[~xi]ρ|

]
ρ

in I i , i = 1, 2 . (2.3)
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We recall that the mean curvature and Gaussian curvature of Si(t) are then given by

κSi = κi −
~νi . ~e1

~xi . ~e1

and KSi = −κi
~νi . ~e1

~xi . ~e1

= κi (κSi − κi) in I i , i = 1, 2 , (2.4)

respectively; see e.g. Barrett et al. (2019b, (2.11)). More precisely, if km,i and kg,i denote
the mean and Gaussian curvatures of Si(t), then

km,i = κSi(ρ, t) and kg,i = KSi(ρ, t) on Π3
2(~xi(ρ, t)) ⊂ Si(t) ∀ ρ ∈ I i , t ∈ [0, T ] .

Clearly, for a smooth surface with bounded curvatures it follows from (2.4) that

~νi(ρ, t) . ~e1 = 0 ∀ ρ ∈ ∂Ii \ {1
2
} , ∀ t ∈ [0, T ] , i = 1, 2 , (2.5)

which is equivalent to

[~xi]ρ(ρ, t) . ~e2 = 0 ∀ ρ ∈ ∂Ii \ {1
2
} , ∀ t ∈ [0, T ] , i = 1, 2 . (2.6)

We note that for the singular fraction in (2.4) it follows from (2.6) and (2.5), on recalling
(2.3), that

lim
ρ→ρ0

~νi(ρ, t) . ~e1

~xi(ρ, t) . ~e1

= lim
ρ→ρ0

[~νi]ρ(ρ, t) . ~e1

[~xi]ρ(ρ, t) . ~e1

= [~νi]s(ρ0, t) . ~τi(ρ0, t) = −κi(ρ0, t)

∀ ρ0 ∈ ∂Ii \ {1
2
} , ∀ t ∈ [0, T ] , i = 1, 2 . (2.7)

Moreover, on recalling (1.7), it is easily seen that

k∂Si,n = −
~νi(

1
2
, t) . ~e1

~xi(
1
2
, t) . ~e1

and k∂Si,µ = −
~µi(

1
2
, t) . ~e1

~xi(
1
2
, t) . ~e1

on γ(t) ∀ t ∈ [0, T ] , i = 1, 2 , (2.8)

where ~νi(·, t) is the unit normal on Γi(t) as defined in (2.2), and where

~µ1(1
2
, t) = ~τ1(1

2
, t) , ~µ2(1

2
, t) = −~τ2(1

2
, t) ∀ t ∈ [0, T ] , (2.9)

denotes the corresponding conormals of Γi(t) at the endpoint ~x1(1
2
, t) = ~x2(1

2
, t). Here we

have recalled that the conormal ~µ∂Si points out of Si(t).

We consider the following axisymmetric energy that is equivalent to (1.5) for flows of
axisymmetric surfaces without topological changes

Ẽ(~x(t)) = E(S(t))− 2π
2∑
i=1

αGi m(Si(t))

=
2∑
i=1

[
π αi

∫
Ii

~xi . ~e1 [κSi − κi]
2 |[~xi]ρ| dρ

]
− 2 π

2∑
i=1

αGi ~µi(
1
2
) . ~e1 + π ς

2∑
i=1

~xi(
1
2
) . ~e1 .

(2.10)
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In a similar fashion, we define an axisymmetric analogue of (1.8) as

Ẽλ(~x(t)) = Ẽ(~x(t)) +
2∑
i=1

λA,iA(~x(t)) + λV V (~x(t)) , (2.11)

where we have defined

Ai(~x(t)) = 2 π

∫
Ii

~xi . ~e1 |[~xi]ρ| dρ = H2(Si(t)) (2.12)

and, see e.g. Barrett et al. (2019b, (3.10)),

V (~x(t)) = π

2∑
i=1

∫
Ii

(~xi . ~e1)2 ~νi . ~e1 |[~xi]ρ| dρ = L3(Ω(t)) . (2.13)

For later use we observe that

d

dt
Ai(~x(t)) = 2 π

∫
Ii

[[~xi]t . ~e1 |[~xi]ρ|+ (~xi . ~e1) ([~xi]t)ρ . ~τi] dρ , i = 1, 2 , (2.14)

and
d

dt
V (~x(t)) = 2 π

2∑
i=1

∫
Ii

(~xi . ~e1) [~xi]t . ~νi |[~xi]ρ| dρ . (2.15)

The axisymmetric formulation of the gradient flow (1.9) is now given by

(~xi . ~e1) [~xi]t . ~νi = −αi [~xi . ~e1 (κSi)s]s + 2αi ~xi . ~e1 (κSi − κi)KSi
− ~xi . ~e1

[
1
2
αi (κ2

Si − κ2
i )− λA,i

]
κSi − λV ~xi . ~e1 in I i , i = 1, 2 .

(2.16)

At an interface between the two phases, we require axisymmetric versions of the boundary
conditions (1.10) and (1.11). First of all, we notice that the geodesic torsion ti of γ(t) with
respect to Si, i = 1, 2, is zero in the axisymmetric setting and hence the terms involving
the geodesic torsion vanish, see also Barrett et al. (2019e, (2.25)). In the C0–case, relating
to (1.10), we have for the axisymmetric situation the following conditions at the point
ρ = 1

2
and for t ∈ [0, T ]:

αi (κSi − κi)− αGi
~νi . ~e1

~x .~e1

= 0 , i = 1, 2 , (2.17a)

2∑
i=1

[
(−1)i−1 αi (κSi)s ~νi −

(
1
2
αi (κSi − κi)

2 + αGi KSi + λA,i
)
~µi
]
− ς

~x .~e1

~e1 = ~0 , (2.17b)

where we used the notation ~x = ~x1 = ~x2 at ρ = 1
2
. For the C1–case, and so corresponding

to (1.11), we obtain at ρ = 1
2

and for t ∈ [0, T ]:

[αi (κSi − κi)]
2
1 − [αGi ]21

~ν .~e1

~x .~e1

= 0 , (2.18a)

− [αi (κSi)s]21 − ς
~ν .~e1

~x .~e1

= 0 , (2.18b)

[−1
2
αi (κSi − κi)

2 + αi (κSi − κi)κi − λA,i]21 − ς
~µ .~e1

~x .~e1

= 0 , (2.18c)
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where we have defined ~ν = ~ν1 = ~ν2 and ~µ = ~µ2 = −~µ1 at ρ = 1
2
, and where we have used

(1.7), (2.4) and (2.8).

Finally, we impose the following boundary conditions at the axis of rotation, for t ∈
[0, T ]:

~xi . ~e1 = 0 on ∂Ii \ {1
2
} , (2.19a)

(~xi)ρ . ~e2 = 0 on ∂Ii \ {1
2
} , (2.19b)

(κSi)ρ = 0 on ∂Ii \ {1
2
} . (2.19c)

Here (2.19c) ensures that the radially symmetric functions on Si(t) induced by κSi , i =
1, 2, are differentiable, while (2.19b) is the same as (2.6).

Clearly, for surface area and volume conserving flows, the Lagrange multipliers
(λA,1(t), λA,2(t), λV (t))T ∈ R3 in (2.16) need to be chosen such that

d

dt

∫
Ii

~xi . ~e1 |[~xi]ρ| dρ = 0 , i = 1, 2 ,
d

dt

2∑
i=1

(
(~xi . ~e1)2, ~νi . ~e1 |[~xi]ρ|

)
= 0 , (2.20)

where we recall (2.14) and (2.15).

3 Weak formulation

Using the formal calculus of PDE constrained optimisation, in this section we derive a
weak formulation for the gradient flow (2.16). The necessary techniques are described in
Barrett et al. (2020, §9.3), and details for the case of a one-phase axisymmetric surface
can be found in Barrett et al. (2019e, §3.1). The fact that the obtained weak formulation
is indeed consistent with (2.16) and the boundary conditions (2.17), (2.18) and (2.19) will
be shown in Appendix A.

We begin by defining the following function spaces. Let

Xi = {~ηi ∈ [H1(Ii)]
2 : ~ηi(ρ) . ~e1 = 0 ∀ ρ ∈ ∂Ii \ {1

2
}} , i = 1, 2 ,

X = {(~η1, ~η2) ∈
2
×
i=1

: Xi : ~η1(1
2
) = ~η2(1

2
)} ,

as well as Y = Y1 × Y2, with Yi = Xi, i = 1, 2, and

YC0 = {(~η1, ~η2) ∈ Y : ~η1(1
2
) = ~η2(1

2
) = ~0} , YC1 = {(~η1, ~η2) ∈ Y : ~η1(1

2
) = ~η2(1

2
)} . (3.1)

For later use, we define the first variation of a differentiable quantity B(~x), in the
direction ~χ as [

δ

δ~x
B(~x)

]
(~χ) = lim

ε→0

B(~x+ ε ~χ)−B(~x)

ε
,

9



and we recall, for example, the variations of some geometric quantities from Barrett et al.
(2019e, (3.3)).

Let (·, ·) denote both the L2–inner product on I1 and on I2. It will always be clear from
the integrand which product is meant, and so we use this abuse of notation throughout
the paper. We now consider the following weak formulation of (2.3) with ~xi ∈ Xi and
κi ∈ L2(Ii) such that

(κi ~νi, ~ηi |[~xi]ρ|) + (~τi, [~ηi]ρ) = [~mi . ~ηi] (1
2
) ∀ ~ηi ∈ Yi , i = 1, 2 , (3.2)

where we recall (2.2). We note that (3.2) weakly imposes (2.6). However, (3.2) also yields
that ~mi(

1
2
) = ~µi(

1
2
) ∈ R2. This will not be the case under discretisation, where ~mi(

1
2
) ∈ R2

is an approximation to the conormal ~µi(
1
2
). As ~mi are only defined at ρ = 1

2
, we simply

write ~mi for ~mi(
1
2
) from now on. On introducing the parameter C1 ∈ {0, 1}, we can easily

model the case of either a C0– or a C1–junction with the help of the side constraint

C1 (~m1 + ~m2) = ~0 . (3.3)

We remark that upon discretisation, (3.2) leads to an equidistribution property in the
two phases. We refer to the recent review article Barrett et al. (2020), and to Remark 4.5
below, for more details.

Now, in order to study the L2–gradient flow of the energy (2.10), subject to the side
constraints (3.2) and (3.3), we consider the Lagrangian

L((~xi,κ?
i , ~mi, ~yi)

2
i=1,

~φ) = π
2∑
i=1

(
αi

[
κ?
i −

~νi . ~e1

~xi . ~e1

− κi

]2

, ~xi . ~e1 |[~xi]ρ|

)

+ π ς
2∑
i=1

~xi(
1
2
) . ~e1 −

2∑
i=1

(κ?
i ~νi, ~yi |[~xi]ρ|)−

2∑
i=1

(~τi, [~yi]ρ)

+
2∑
i=1

~mi .
(
~yi(

1
2
)− 2 π αGi ~e1

)
+ C1 (~m1 + ~m2) . ~φ , (3.4)

for ~x = (~x1, ~x2) ∈ X, κ? = (κ?
1 ,κ?

2) ∈ L2(I1) × L2(I2), (~m1, ~m2) ∈ [R2]2, ~y = (~y1, ~y2) ∈ Y
and ~φ ∈ R2.

Upon taking the appropriate variations ~χ = (~χ1, ~χ2) ∈ X in ~x, χi ∈ L2(Ii) in κ?
i ,

~zi ∈ R2 in ~mi, ~ηi ∈ Yi in ~yi and ~w ∈ R2 in ~φ, we obtain our desired weak formulation, see
also Barrett et al. (2019e, §3.1) for more details. For example, the variations in ~mi yield
that

− 2π αGi ~e1 + ~yi(
1
2
) + C1

~φ = ~0 , i = 1, 2 . (3.5)

Moreover, taking variations ~ηi ∈ Yi in ~yi, and setting
[
δ
δ~yi
L
]

(~ηi) = 0 gives (3.2), with κi
replaced by κ?

i . Thus we obtain κ?
i = κi, i = 1, 2, and we are going to use these identities

from now on.
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Taking variations χi ∈ L2(Ii) in κ?
i and setting

[
δ
δκ?

i
L
]

(χi) = 0 we obtain, on using

κ?
i = κi, that

2π αi

(
κi −

~νi . ~e1

~xi . ~e1

− κi, ~xi . ~e1 χi |[~xi]ρ|
)
− (~νi . ~yi, χi |[~xi]ρ|) = 0 ∀ χi ∈ L2(Ii) , i = 1, 2 ,

which implies that

2 π ~xi . ~e1 αi

[
κi −

~νi . ~e1

~xi . ~e1

− κi

]
= ~yi . ~νi in I i , i = 1, 2 . (3.6)

Finally, taking variations in ~φ and setting them to zero gives (3.3). Setting ~x(·, t) =
(~x1, ~x2)(·, t) ∈ X, the evolution law for ~x is given as

2 π
2∑
i=1

((~xi . ~e1) [~xi]t . ~νi, ~χi . ~νi |[~xi]ρ|) = −
[
δ

δ~x
L
]

(~χ) ∀ ~χ = (~χ1, ~χ2) ∈ X .

Here, the term on the left hand side is the normal part of the velocity integrated on the
surface against the test function, which is the natural term for a gradient flow formulation.

Overall we obtain the following weak formulation, compare with Barrett et al. (2019e,
(3.22)). Let (~x1, ~x2)(·, 0) ∈ X and αi ∈ R>0, κi, α

G
i ∈ R be given for i = 1, 2. For

t ∈ (0, T ], find (~x1, ~x2)(·, t) ∈ X, (κi, ~mi, ~yi) ∈ L2(Ii) × R2 × Yi, i = 1, 2, and C1
~φ ∈ R2

such that

2π
2∑
i=1

((~xi . ~e1) [~xi]t . ~νi, ~χi . ~νi |[~xi]ρ|)−
2∑
i=1

(
[~yi]ρ . ~νi, [~χi]ρ . ~νi |[~xi]ρ|−1

)
= −π

2∑
i=1

(
αi

[
κi −

~νi . ~e1

~xi . ~e1

− κi

]2

, ~χi . ~e1 |[~xi]ρ|+ (~xi . ~e1)~τi . [~χi]ρ

)

− 2π
2∑
i=1

αi

(
κi −

~νi . ~e1

~xi . ~e1

− κi,
~νi . ~e1

~xi . ~e1

~χi . ~e1 |[~xi]ρ|
)

− 2π
2∑
i=1

αi

(
κi −

~νi . ~e1

~xi . ~e1

− κi, (~τi . ~e1) [~χi]ρ . ~νi

)
+

2∑
i=1

(
κi ~y⊥i , [~χi]ρ

)
− π ς

2∑
i=1

~χi(
1
2
) . ~e1 ∀ ~χ = (~χ1, ~χ2) ∈ X , (3.7a)

2π

(
αi

[
κi −

~νi . ~e1

~xi . ~e1

− κi

]
, ~xi . ~e1 χ |[~xi]ρ|

)
− (~νi . ~yi, χi |[~xi]ρ|) = 0

∀ χi ∈ L2(Ii) , i = 1, 2 , (3.7b)

(κi ~νi, ~ηi |[~xi]ρ|) +
(
[~xi]ρ, [~ηi]ρ |[~xi]ρ|−1

)
= ~mi . ~ηi(

1
2
) ∀ ~ηi ∈ Yi , i = 1, 2 , (3.7c)

− 2π αGi ~e1 + ~yi(
1
2
) + C1

~φ = ~0 , i = 1, 2 , (3.7d)

C1 (~m1 + ~m2) = ~0 . (3.7e)
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Remark. 3.1. In the case C1 = 0, the condition (3.7d) reduces to the Dirichlet boundary
condition ~yi(

1
2
) = 2 π αGi ~e1, i = 1, 2. Moreover, the condition (3.7e) disappears, and

so ~mi can be eliminated from the formulation by replacing ~ηi ∈ Yi in (3.7c) with test
functions such that ~ηi(

1
2
) = ~0. The resulting formulation is to find (~x1, ~x2)(·, t) ∈ X,

(κi, ~yi) ∈ L2(Ii)× Yi with ~yi(
1
2
) = 2 π αGi ~e1, i = 1, 2, such that (3.7a), (3.7b) and

2∑
i=1

(κi ~νi, ~ηi |[~xi]ρ|) +
2∑
i=1

(
[~xi]ρ, [~ηi]ρ |[~xi]ρ|−1

)
= 0 ∀ (~η1, ~η2) ∈ YC0 .

In the case C1 = 1, on the other hand, it follows from (3.7d) and (3.7e) that ~y1(1
2
)−

~y2(1
2
) = 2π [αG1 − αG2 ]~e1 and that ~m2 = −~m1. Hence we can again eliminate ~mi, as well

as ~φ, and reduce the weak formulation to: Find (~x1, ~x2)(·, t) ∈ X, (κi, ~yi) ∈ L2(Ii) × Yi,
i = 1, 2, with ~y1(1

2
, t)− ~y2(1

2
, t) = 2 π [αG1 − αG2 ]~e1, such that (3.7a), (3.7b) and

2∑
i=1

(κi ~νi, ~ηi |[~xi]ρ|) +
2∑
i=1

(
[~xi]ρ, [~ηi]ρ |[~xi]ρ|−1

)
= 0 ∀ (~η1, ~η2) ∈ YC1 , (3.8)

where we have used that
∑2

i=1 ~mi . ~ηi(
1
2
) = 0 for (~η1, ~η2) ∈ YC1, recall (3.1).

Remark. 3.2. It is also possible to consider a weak formulation based on κSi as variables,
similarly to Barrett et al. (2019e, §3.2). In particular, it follows from (2.4) and (2.3) that

κSi ~νi =
1

|[~xi]ρ|

[
[~xi]ρ
|[~xi]ρ|

]
ρ

− ~νi . ~e1

~xi . ~e1

~νi in I i , i = 1, 2 ,

and so the side constraints (3.2) are replaced by

(~xi . ~e1 κSi ~νi + ~e1, ~ηi |[~xi]ρ|) + ((~xi . ~e1)~τi, [~ηi]ρ) = [(~xi . ~e1) ~mi . ~ηi] (1
2
) ∀ ~ηi ∈ Yi , i = 1, 2 .

(3.9)
Hence the appropriate Lagrangian for the L2–gradient flow of (2.10) is

LS((~xi,κ?
Si , ~mi, ~ySi)

2
i=1,

~φ) = π
2∑
i=1

(
αi
[
κ?
Si − κi

]2
, ~xi . ~e1 |[~xi]ρ|

)
+ π ς

2∑
i=1

~xi(
1
2
) . ~e1 −

2∑
i=1

(
~xi . ~e1 κ?

Si ~νi + ~e1, ~ySi |[~xi]ρ|
)
−

2∑
i=1

((~xi . ~e1)~τi, (~ySi)ρ)

+
2∑
i=1

~mi .
(
[(~xi . ~e1) ~ySi ](

1
2
)− 2π αGi ~e1

)
+ C1 (~m1 + ~m2) . ~φ ,

for (~x1, ~x2) ∈ X, κ?
Si ∈ L2(Ii), ~mi ∈ R2, ~ySi ∈ Yi and ~φ ∈ R2. As before, upon taking

variations in (~χ1, ~χ2) ∈ X in ~x, χi ∈ L2(Ii) in κ?
i , ~zi ∈ R2 in ~mi, ~ηi ∈ Yi in ~yi and ~w ∈ R2

in ~φ, we obtain a weak formulation.
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3.1 Conserved flows

On writing (3.7a) as

2 π
2∑
i=1

((~xi . ~e1) [~xi]t . ~νi, ~χi . ~νi |[~xi]ρ|)−
2∑
i=1

(
[~yi]ρ . ~νi, [~χi]ρ . ~νi |[~xi]ρ|−1

)
=

2∑
i=1

(
~fi, ~χi |[~xi]ρ|

)
∀ ~χ ∈ X ,

a weak formulation of (2.16) and (2.20) is given by (3.7), with (3.7a) replaced by

2 π
2∑
i=1

((~xi . ~e1) [~xi]t . ~νi, ~χi . ~νi |[~xi]ρ|)−
2∑
i=1

(
[~yi]ρ . ~νi, [~χi]ρ . ~νi |[~xi]ρ|−1

)
=

2∑
i=1

(
~fi, ~χi |[~xi]ρ|

)
− 2 π

2∑
i=1

λA,i [(~e1, ~χi |[~xi]ρ|) + ((~xi . ~e1)~τi, [~χi]ρ)]

− 2 π λV

2∑
i=1

((~xi . ~e1)~νi, ~χi |[~xi]ρ|) ∀ ~χ ∈ X , (3.10)

where (λA,1(t), λA,2(t), λV (t))T ∈ R3 are chosen such that (2.20) holds, which is equivalent
to

Ai(~x(t)) = Ai(~x(0)) , i = 1, 2 , V (~x(t)) = V (~x(0)) . (3.11)

We note that for the second term on the right hand side of (3.10) we have observed
that

[
δ
δ~x
Ai(~x)

]
(~χ) = 2π (~e1, ~χi |[~xi]ρ|) + 2π ((~xi . ~e1)~τi, [~χi]ρ), i = 1, 2, similarly to (2.14),

compare also with (3.9). The advantage of the formulation (3.10) over one with κSi is
that mimicking (3.10) on the discrete level will allow for a stability estimate.

4 Semidiscrete approximation

Let I i =
⋃Ji
j=1 Ii,j, Ji ≥ 3, be decompositions of I i into intervals given by the nodes

qi,j, Ii,j = [qi,j−1, qi,j]. For simplicity, and without loss of generality, we assume that the
subintervals form equipartitionings of I i, i.e. that

qi,j = 1
2

(i− 1) + j hi , with hi = (2 Ji)
−1 , j = 0, . . . , Ji . (4.1)

The necessary finite element spaces are defined as follows:

V h
i = {χi ∈ C(I i) : χi |Ii,j is linear ∀ j = 1, . . . , Ji} , i = 1, 2 ,

and V h
i = [V h

i ]2 , i = 1, 2 .
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We also define Yh
i = Yi ∩ V h

i , i = 1, 2, as well as

Xh = X ∩
2
×
i=1

V h
i , Yh

C0 = YC0 ∩
2
×
i=1

V h
i , Yh

C1 = YC1 ∩
2
×
i=1

V h
i ,

W h
1 = {χ1 ∈ V h

1 : χ1(0) = 0} , W h
2 = {χ2 ∈ V h

2 : χ2(1) = 0} , W h = W h
1 ×W h

2 .

Let {χi,j}Jij=0 denote the standard basis of V h
i . For later use, we let πhi : C(I i)→ V h

i be the

standard interpolation operator at the nodes {qi,j}Jij=0, and similarly ~πhi : [C(I i)]
2 → V h

i .

Let the mass lumped L2–inner product (f, g)h, for two piecewise continuous functions on
Ii, with possible jumps at the nodes {qi,j}Ji−1

j=1 , be defined as

(f, g)h = 1
2
h

Ji∑
j=1

[
(f g)(q−i,j) + (f g)(q+

i,j−1)
]
, (4.2)

where we define f(q±) = lim
δ↘0

f(q ± δ). The definition (4.2) naturally extends to vector

valued functions.

Let ( ~Xh
i (t))t∈[0,T ], with ( ~Xh

1 (t), ~Xh
2 (t)) ∈ Xh, be approximations to (~xi(t))t∈[0,T ] and

define Γhi (t) = ~Xh
i (t)(I i). From now on we use the shorthand notation ~Xh = ( ~Xh

1 ,
~Xh

2 ),
and similarly for all the other finite element functions.

Assumption. 4.1. Let

~Xh
i (ρ, t) . ~e1 > 0 ∀ ρ ∈ I i \ {0, 1} ∀ t ∈ [0, T ] , i = 1, 2 . (4.3)

In addition, let ~Xh
i (qi,j, t) 6= ~Xh

i (qi,j+1, t), j = 0, . . . , Ji − 1, for all t ∈ [0, T ], i = 1, 2.

Then, similarly to (2.2), we set

~τhi = [ ~Xh
i ]s =

[ ~Xh
i ]ρ

|[ ~Xh
i ]ρ|

and ~νhi = −(~τhi )⊥ in I i , (4.4)

which is well-defined if Assumption 4.1 holds. We note that (4.3) implies ~τhi . ~e1 6= 0 on
elements touching the x2–axis, and so

~νhi . ~e2 6= 0 on ∂Ii \ {1
2
} , (4.5)

compare also with (2.5) and (2.6).

Assumption. 4.2. Let Assumption 4.1 hold and let ~Xh
i (qi,j−1, t) 6= ~Xh

i (qi,j+1, t), j =
1, . . . , Ji − 1, for all t ∈ [0, T ].

For later use, we let ~ωhi ∈ V h
i be the mass-lumped L2–projection of ~νhi onto V h

i , i = 1, 2,
i.e. (

~ωhi , ~ϕi |[ ~Xh
i ]ρ|
)h

=
(
~νhi , ~ϕi |[ ~Xh

i ]ρ|
)

=
(
~νhi , ~ϕi |[ ~Xh

i ]ρ|
)h

∀ ~ϕi ∈ V h
i . (4.6)
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Assumption 4.2 yields that |~ωhi | > 0 in I i, i = 1, 2. It follows that ~vhi ∈ V h
i , i = 1, 2,

defined by

~vhi = ~πhi

[
~ωhi
|~ωhi |

]
, (4.7)

is well-defined if Assumption 4.2 holds. We also define Qh
i ∈ [V h

i ]2×2 defined by

Qh
i (qi,j) =

{
Id qi,j = 1

2
,

~vhi ⊗ ~vhi qi,j 6= 1
2
,

j = 0, . . . , Ji , i = 1, 2 . (4.8)

Later on we will describe the evolution of Γhi (t) through ~πhi [Qh
i [ ~Xh

i ]t], for ∂t ( ~Xh
1 ,
~Xh

2 ) ∈ Xh.

This will allow tangential motion for interior nodes, which together with a discretisation
of (3.2) will lead to equidistribution in each phase. But crucially, we will specify the full
velocity at the junction point, ρ = 1

2
. This is because the tangential motion of the junction

cannot be allowed to be arbitrary, as this would affect the evolution of the two phases,
and not just the evolution of their parameterisations ~Xh

i , i = 1, 2. A similar strategy has
been pursued by the authors in Barrett et al. (2019e, (4.8)) and in Barrett et al. (2018,
(4.8)).

As the discrete analogue of (3.2), we let ( ~Xh
1 ,
~Xh

2 ) ∈ Xh, κhi ∈ V h
i and ~mh

i ∈ R2 be
such that (

κhi ~ν
h
i , ~ηi |[ ~Xh

i ]ρ|
)h

+
(
~τhi , [~ηi]ρ

)
= ~mh

i . ~ηi(
1
2
) ∀ ~ηi ∈ Yh

i , i = 1, 2 , (4.9)

where we recall (4.4). In the case of a C1–junction, it will turn out that (4.9) can influence
the tangential motion of the junction in a way that only depends on the discretisation pa-
rameters, rather than on the actual physics of the problem. To avoid this from happening,
we need to add more flexibility for the tangential motion of the junction. In particular,
on recalling (4.4), we amend (4.9) to(

κhi ~ν
h
i , ~ηi |[ ~Xh

i ]ρ|
)h

+ C1 β
h
(
χi,(2−i) Ji [ ~Xh

i ]ρ, ~ηi

)h
+
(
~τhi , [~ηi]ρ

)
= ~mh

i . ~ηi(
1
2
)

∀ ~ηi ∈ Yh
i , i = 1, 2 , (4.10)

where βh ∈ R is an additional degree of freedom, and where we observe that χi,(2−i) Ji is
the basis function of V h

i with χi,(2−i) Ji(
1
2
) = 1, i = 1, 2. The effect of the new term in

(4.10), analogously to Barrett et al. (2012, (3.49)), is to allow for an additional degree
of freedom avoiding that meshes are equidistributing across the junction, compare also
Barrett et al. (2012, Remark 3.2).

We would like to mimic on the discrete level the procedure in Section 3. However, a
naive discretisation of (3.4) will not give a well-defined Lagrangian, since a discrete variant
of (2.7) will in general not hold. To overcome the arising singularity in a discretisation
of (3.4), we now introduce the following discrete approximation of κSi , which will be

based on κhi . In particular, on recalling (2.7) and (4.6), we introduce, given ~Xh
i ∈ Xh

i and
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κhi ∈ V h
i , the function Khi ( ~X

h
i , κ

h
i ) ∈ V h

i such that

[Khi ( ~X
h
i , κ

h
i )](qi,j) =

κ
h
i (qi,j)−

~ωhi (qi,j) . ~e1

~Xh
i (qi,j) . ~e1

qi,j ∈ I i \ {0, 1} ,

2κhi (qi,j) qi,j ∈ {0, 1} ,
(4.11)

compare with Barrett et al. (2019e, (4.12)). This allows us to define the discrete analogue
of the energy (2.10) as

Êh(t) = π

2∑
i=1

(
αi

[
Khi ( ~X

h
i , κ

h
i )− κi

]2

, ~Xh
i . ~e1 |[ ~Xh

i ]ρ|
)h

− 2 π
2∑
i=1

αGi ~m
h
i . ~e1 + π ς

2∑
i=1

~Xh
i (1

2
) . ~e1 . (4.12)

Remark. 4.3. We observe that the energy Êh(t) does not depend on the values κh1(0, t)
and κh2(1, t). We will thus fix these values to be zero from now on, by seeking κhi ∈ W h

i ,
i = 1, 2. A welcome side effect of this procedure is that choosing ~η1 = χ1,0 ~e2 and ~η2 =
χ2,J2 ~e2 in (4.10) yields that

( ~Xh
1 (q1,1)− ~Xh

1 (q1,0)) . ~e2 = ( ~Xh
2 (q2,J2)− ~Xh

2 (q2,J2−1)) . ~e2 = 0 , (4.13)

which can be viewed as exact discretisations of the 90◦ contact angle conditions (2.19b).

Similarly to (3.4), we define the discrete Lagrangian

Lh(( ~Xh
i , κ

h
i , ~m

h
i , ~Y

h
i )2

i=1, β
h, ~φh)

= π
2∑
i=1

(
αi

[
Khi ( ~X

h
i , κ

h
i )− κi

]2

, ~Xh
i . ~e1 |[ ~Xh

i ]ρ|
)h

+ π ς
2∑
i=1

~Xh
i (1

2
) . ~e1

−
2∑
i=1

(
κhi ~ν

h
i ,
~Y h
i |[ ~Xh

i ]ρ|
)h
− C1 β

h

2∑
i=1

(
χi,(2−i) Ji [ ~Xh

i ]ρ, ~Y
h
i

)h
−

2∑
i=1

(
~τhi , [~Y

h
i ]ρ

)
+

2∑
i=1

~mh
i .
(
~Y h
i (1

2
)− 2π αGi ~e1

)
+ C1 (~mh

1 + ~mh
2) . ~φh ,

for the minimisation of the energy (4.12) subject to the side constraint (4.10) and a

discrete variant of (3.3), where ( ~Xh
1 ,
~Xh

2 ) ∈ Xh, κhi ∈ W h
i , C1 β

h ∈ R, ~mh
i ∈ R2, ~Y h

i ∈ Yh
i

and ~φh ∈ R2.

Taking variations ~ηi ∈ Yh
i in ~Y h

i , and setting
[

δ

δ~Y h
i

Lh
]

(~ηi) = 0 we obtain (4.10).

Taking variations χi ∈ W h
i in κhi and setting

[
δ
δκhi
Lh
]

(χi) = 0 we obtain

2 π
(
~Xh
i . ~e1

(
αi [K

h
i ( ~X

h
i , κ

h
i )− κi]

)
, χi |[ ~Xh

i ]ρ|
)h
−
(
~Y h
i , χi ~ν

h
i |[ ~Xh

i ]ρ|
)h

= 0

∀ χi ∈ W h
i , i = 1, 2 (4.14)
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where we have recalled (4.11). Taking variations in ~mh
i ∈ R2, i = 1, 2, and setting them

to zero, yields, similarly to (3.5), that

~Y h
i (1

2
) = 2 π αGi ~e1 − C1

~φh , i = 1, 2 . (4.15)

Similarly, taking variations in ~φ ∈ R2, and setting them to zero, yields

C1 (~mh
1 + ~mh

2) = ~0 . (4.16)

Taking variations in βh ∈ R, and setting them to zero, implies

C1

2∑
i=1

(
χi,(2−i) Ji [ ~Xh

i ]ρ, ~Y
h
i

)h
= 0

⇐⇒ C1

[
( ~Xh

1 (q1,J1)− ~Xh
1 (q1,J1−1)) . ~Y h

1 (1
2
) + ( ~Xh

2 (q2,1)− ~Xh
2 (q2,0)) . ~Y h

2 (1
2
)
]

= 0 .

(4.17)

Taking variations ~χ = (~χ1, ~χ2) ∈ Xh in ~Xh = ( ~Xh
1 ,
~Xh

2 ), and setting

2π
∑2

i=1(( ~Xh
i . ~e1)Qh

i [ ~Xh
i ]t, ~χi |[ ~Xh

i ]ρ|)h = −
[

δ

δ ~Xh
Lh
]

(~χ) we obtain

2π
2∑
i=1

(
( ~Xh

i . ~e1)Qh
i [ ~Xh

i ]t, ~χi |[ ~Xh
i ]ρ|
)h

= −π
2∑
i=1

(
αi

[
Khi ( ~X

h
i , κ

h
i )− κi

]2

,

[
δ

δ ~Xh
( ~Xh

i . ~e1) |[ ~Xh
i ]ρ|
]

(~χ)

)h
− 2 π

2∑
i=1

αi

([
Khi ( ~X

h
i , κ

h
i )− κi

]
,

[
δ

δ ~Xh
Khi ( ~X

h
i , κ

h
i )

]
(~χ) ( ~Xh

i . ~e1) |[ ~Xh
i ]ρ|
)h

+
2∑
i=1

(
κhi
~Y h
i ,

[
δ

δ ~Xh
~νhi |[ ~Xh

i ]ρ|
]

(~χ)

)h
+ C1 β

h

2∑
i=1

(
χi,(2−i) Ji [~χi]ρ, ~Y

h
i

)h
+

2∑
i=1

(
[~Y h
i ]ρ,

[
δ

δ ~Xh
~τhi

]
(~χ)

)
− π ς

2∑
i=1

~χi(
1
2
) . ~e1 ∀ ~χ ∈ Xh . (4.18)
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Choosing ~χ = ~Xh
t in (4.18) yields

2 π
2∑
i=1

(
~Xh
i . ~e1 |Qh

i [ ~Xh
i ]t|2, |[ ~Xh

i ]ρ|
)h

= −π
2∑
i=1

(
αi

[
Khi ( ~X

h
i , κ

h
i )− κi

]2

,
[
( ~Xh

i . ~e1) |[ ~Xh
i ]ρ|
]
t

)h

− 2π
2∑
i=1

αi

(
Khi ( ~X

h
i , κ

h
i )− κi,

[
~ωhi . ~e1

~Xh
i . ~e1

]
t

(Zhi − 2) ( ~Xh
i . ~e1) |[ ~Xh

i ]ρ|

)h

+
2∑
i=1

(
κhi
~Y h
i ,
[
~νhi |[ ~Xh

i ]ρ|
]
t

)h
+ C1 β

h

2∑
i=1

(
χi,(2−i) Ji ([ ~Xh

i ]ρ)t, ~Y
h
i

)h
+

2∑
i=1

(
[~Y h
i ]ρ, [~τ

h
i ]t

)
− π ς

2∑
i=1

[ ~Xh
i ]t(

1
2
) . ~e1 , (4.19)

where we have defined Zhi ∈ V h
i such that

Zhi (qi,j) =

{
1 qi,j ∈ I i \ {0, 1} ,
2 qi,j ∈ {0, 1} .

Differentiating (4.10) with respect to t, and then choosing ~ηi = ~Y h
i ∈ Yh

i and noting
(4.17), yields that(

[κhi ]t, ~Y
h
i . ~ν

h
i |[ ~Xh

i ]ρ|
)h

+
(
κhi ~Y

h
i ,
[
~νhi |[ ~Xh

i ]ρ|
]
t

)h
+ C1 β

h
(
χi,(2−i) Ji ([ ~Xh

i ]ρ)t, ~Y
h
i

)h
+
(

[~τhi ]t, [~Y
h
i ]ρ

)
= [~mh

i ]t . ~Y
h
i (1

2
) , i = 1, 2 . (4.20)

It follows from (4.20), (4.15) and (4.14) with χi = [κhi ]t ∈ W h
i that(

κhi ~Y
h
i ,
[
~νhi |[ ~Xh

i ]ρ|
]
t

)h
+ C1 β

h
(
χi,(2−i) Ji ([ ~Xh

i ]ρ)t, ~Y
h
i

)h
+
(

[~τhi ]t, [~Y
h
i ]ρ

)
= −

(
[κhi ]t, ~Y

h
i . ~ν

h
i |[ ~Xh

i ]ρ|
)h

+ 2 π αGi [~mh
i ]t . ~e1 − C1 [~mh

i ]t .
~φh

= −2 π αi

(
~Xh
i . ~e1 [Khi ( ~X

h
i , κ

h
i )− κi], [κ

h
i ]t |[ ~Xh

i ]ρ|
)h

+ 2 π αGi [~mh
i ]t . ~e1 − C1 [~mh

i ]t .
~φh , i = 1, 2 . (4.21)
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Combining (4.19) and (4.21) yields, on recalling (4.16) and (4.12), that

2 π
2∑
i=1

(
~Xh
i . ~e1 |Qh

i [ ~Xh
i ]t|2, |[ ~Xh

i ]ρ|
)h

= −π
2∑
i=1

(
αi

[
Khi ( ~X

h
i , κ

h
i )− κi

]2

,
[
( ~Xh

i . ~e1) |[ ~Xh
i ]ρ|
]
t

)h

− 2π
2∑
i=1

αi

(
Khi ( ~X

h
i , κ

h
i )− κi,

[
~ωhi . ~e1

~Xh
i . ~e1

]
t

(Zhi − 2) ( ~Xh
i . ~e1) |[ ~Xh

i ]ρ|

)h

− 2π
2∑
i=1

αi

(
~Xh
i . ~e1 [Khi ( ~X

h
i , κ

h
i )− κi], [κ

h
i ]t |[ ~Xh

i ]ρ|
)h

+ 2 π
2∑
i=1

αGi [~mh
i ]t . ~e1 − π ς

2∑
i=1

[ ~Xh
i ]t(

1
2
) . ~e1

= − d

dt
Êh(t) . (4.22)

We now return to (4.18) which, similarly to Barrett et al. (2019e, (4.23)), can be
rewritten as

2 π
2∑
i=1

(
( ~Xh

i . ~e1)Qh
i [ ~Xh

i ]t, ~χi |[ ~Xh
i ]ρ|
)h

=

− π
2∑
i=1

(
αi

[
Khi ( ~X

h
i , κ

h
i )− κi

]2

, ~χi . ~e1 |[ ~Xh
i ]ρ|+ ( ~Xh

i . ~e1)~τhi . [~χi]ρ

)h

+ 2 π
2∑
i=1

αi

([
Khi ( ~X

h
i , κ

h
i )− κi

]
(Zhi − 2),

~ωhi . ~e1

~Xh
i . ~e1

~χi . ~e1 |[ ~Xh
i ]ρ|

)h

+ 2 π
2∑
i=1

αi

([
Khi ( ~X

h
i , κ

h
i )− κi

]
(Zhi − 2)~e1, (~ν

h
i . [~χi]ρ)~τ

h
i + (~τhi . [~χi]ρ) (~ωhi − ~νhi )

)h
−

2∑
i=1

(
κhi
~Y h
i , [~χi]

⊥
ρ

)h
+

2∑
i=1

(
[~Y h
i ]ρ . ~ν

h
i , [~χi]ρ . ~ν

h
i |[ ~Xh

i ]ρ|−1
)

− π ς
2∑
i=1

~χi(
1
2
) . ~e1 ∀ ~χ ∈ Xh . (4.23)

Combining (4.23), (4.14), (4.10), (4.15) and (4.16), our semidiscrete approximation is

given, on noting ~a .~b⊥ = −~a⊥.~b and (4.4), as follows.

(Ph)h Let ~Xh(·, 0) ∈ Xh be given. Then, for t ∈ (0, T ] find ~Xh(·, t) ∈ Xh, (κhi (·, t), ~Y h
i (·, t),
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~mh
i (t)) ∈ W h

i × Yh
i × R2, i = 1, 2, C1 β

h ∈ R and C1
~φh ∈ R2 such that

2 π
2∑
i=1

(
( ~Xh

i . ~e1)Qh
i [ ~Xh

i ]t, ~χi |[ ~Xh
i ]ρ|
)h
−

2∑
i=1

(
[~Y h
i ]ρ . ~ν

h
i , [~χi]ρ . ~ν

h
i |[ ~Xh

i ]ρ|−1
)

=

− π
2∑
i=1

(
αi

[
Khi ( ~X

h
i , κ

h
i )− κi

]2

, ~χi . ~e1 |[ ~Xh
i ]ρ|+ ( ~Xh

i . ~e1)~τhi . [~χi]ρ

)h
+ 2 π

2∑
i=1

αi

([
Khi ( ~X

h
i , κ

h
i )− κi

]
(Zhi − 2),

~ωhi . ~e1

~Xh . ~e1

~χi . ~e1 |[ ~Xh
i ]ρ|
)h

+ 2 π
2∑
i=1

αi

([
Khi ( ~X

h
i , κ

h
i )− κi

]
(Zhi − 2)~e1, (~ν

h
i . [~χi]ρ)~τ

h
i + (~τhi . [~χi]ρ) (~ωhi − ~νhi )

)h
+

2∑
i=1

(
κhi (~Y h

i )⊥, [~χi]ρ

)h
+ C1 β

h

2∑
i=1

(
χi,(2−i) Ji [~χi]ρ, ~Y

h
i

)h
− π ς

2∑
i=1

~χi(
1
2
) . ~e1

∀ ~χ ∈ Xh , (4.24a)

2π
(
~Xh
i . ~e1

(
αi [K

h
i ( ~X

h
i , κ

h
i )− κi]

)
, χi |[ ~Xh

i ]ρ|
)h
−
(
~Y h
i , χi ~ν

h
i |[ ~Xh

i ]ρ|
)h

= 0

∀ χi ∈ W h
i , i = 1, 2 , (4.24b)(

κhi ~ν
h
i , ~ηi |[ ~Xh

i ]ρ|
)h

+ C1 β
h
(
χi,(2−i) Ji [ ~Xh

i ]ρ, ~ηi

)h
+
(

[ ~Xh
i ]ρ, [~ηi]ρ |[ ~Xh

i ]ρ|−1
)

= ~mh
i . ~ηi(

1
2
)

∀ ~ηi ∈ Yh
i , i = 1, 2 , (4.24c)

− 2 π αGi ~e1 + ~Y h
i (1

2
) + C1

~φh = ~0 , i = 1, 2 , (4.24d)

C1

2∑
i=1

(
χi,(2−i) Ji [ ~Xh

i ]ρ, ~Y
h
i

)h
= 0 , (4.24e)

C1 (~mh
1 + ~mh

2) = ~0 . (4.24f)

Theorem. 4.4. Let Assumption 4.2 be satisfied and let ( ~Xh(t), κh(t), ~Y h(t), ~mh(t),

C1 β
h(t), ~φh)t∈(0,T ] be a solution to (4.24). Then the solution satisfies the stability bound

d

dt
Êh(t) + 2 π

2∑
i=1

(
~Xh
i . ~e1 |Qh

i [ ~Xh
i ]t|2, |[ ~Xh

i ]ρ|
)h

= 0 .

Proof. The desired result follows as (4.24) is just a rewrite of (4.18), (4.14), (4.10),
(4.15) and (4.16), and then noting (4.19)–(4.22).

Remark. 4.5. We note that on choosing ~ηi = χi,j [~ωhi (qi,j)]
⊥, for j ∈ {1, . . . , Ji − 1} so

that ~ηi ∈ Yh
i with ~ηi(

1
2
) = ~0, in (4.24c), i = 1, 2, we obtain that

| ~Xh
i (qi,j)− ~Xh

i (qi,j−1)| = | ~Xh
i (qi,j+1)− ~Xh

i (qi,j)|
or ~Xh

i (qi,j)− ~Xh
i (qi,j−1) ‖ ~Xh

i (qi,j+1)− ~Xh
i (qi,j) , j = 1, . . . , Ji − 1 , i = 1, 2 . (4.25)
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See Barrett et al. (2007a, Remark 2.4) for details. Hence the curves Γhi (t), i = 1, 2, will
each be equidistributed where-ever two neighbouring elements are not parallel.

We now highlight why the term involving βh is crucial in (4.10) in order to avoid
undesirable tangential motion of the junction when C1 = 1. To this end, let us assume
for now that βh = 0. Then we can choose ~η1 = χ1,J1 ~µ

h
2 and ~η2 = χ2,0 ~µ

h
2 in (4.24c), where

we note that ~µh2 = −[~ωh2 (q2,0)]⊥ is the true conormal to Γh2(t) at ~Xh
2 (1

2
, t). On noting

~η1(1
2
) = ~η2(1

2
) = ~µh2 and (4.24f) it follows that(

κh1 ~ν
h
1 , χ1,J1 ~µ

h
2 |[ ~Xh

1 ]ρ|
)h

+
(
~τh1 , [χ1,J1 ]ρ ~µ

h
2

)
+
(
~τh2 , [χ2,0]ρ ~µ

h
2

)
= 0

⇒
(
κh1 , χ1,J1 |[ ~Xh

1 ]ρ|
)h
~νh1 (1

2
) . ~µh2 + (1, [χ1,J1 ]ρ)~τ

h
1 (1

2
) . ~µh2 − (1, [χ2,0]ρ) = 0 . (4.26)

Now, similarly to Barrett et al. (2012, Remark 3.2), it can be argued that (4.26), enforces
some tangential motion of the junction that is determined by the discretisation. In partic-
ular, in the case that the two elements meeting at the junction are parallel, which implies
that ~νh1 (1

2
) . ~µh2 = 0 and ~τh1 (1

2
) . ~µh2 = −1, then (4.26) enforces

(1, [χ1,J1 ]ρ) + (1, [χ2,0]ρ) = 0 , (4.27)

which means that the two elements next to the C1–junction will have the same length.
Together with (4.25) this would imply a global equidistribution property, across the two
phases. Even though in general (4.27) will not hold exactly, in practice some undesirable
tangential motion can be expected, and is observed in our numerical experiments. It is for
this reason that we only consider the scheme (4.24) as stated.

Remark. 4.6. In accordance with Remark 3.1, it is possible to eliminate the discrete
conormal vectors ~mh

i , i = 1, 2, as well as ~φh, from (4.24). In particular, ( ~Xh(t), κh(t),
~Y h(t), C1 β

h(t))t∈(0,T ] form part of a solution to (4.24) if and only if ~Xh(t) ∈ Xh, κh(t) ∈
W h, ~Y h ∈ Yh and C1 β

h ∈ R with{
~Y h
i (1

2
) = 2 π αGi ~e1 , i = 1, 2 C1 = 0 ,

~Y h
1 (1

2
)− ~Y h

2 (1
2
) = 2π [αG1 − αG2 ]~e1 and (4.17) C1 = 1 ,

are such that (4.24a), (4.24b) and

2∑
i=1

(
κhi ~ν

h
i , ~ηi |[ ~Xh

i ]ρ|
)h

+ C1 β
h

2∑
i=1

(
χi,(2−i) Ji [ ~Xh

i ]ρ, ~ηi

)h
+

2∑
i=1

(
[ ~Xh

i ]ρ, [~ηi]ρ |[ ~Xh
i ]ρ|−1

)
= 0 ∀ ~η ∈

{
Yh
C0 C1 = 0 ,

Yh
C1 C1 = 1 ,

hold.
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4.1 Conserved flows

We rewrite (4.24a) as

2π
2∑
i=1

(
( ~Xh

i . ~e1)Qh
i [ ~Xh

i ]t, ~χi |[ ~Xh
i ]ρ|
)h
−

2∑
i=1

(
[~Y h
i ]ρ . ~ν

h
i , [~χi]ρ . ~ν

h
i |[ ~Xh

i ]ρ|−1
)

=
2∑
i=1

(
~fhi , ~χi |[ ~Xh

i ]ρ|
)h

∀ ~χ ∈ Xh .

Then the natural generalisation of (Ph)h, (4.24), that approximates the weak formulation
(3.10), (3.7b)–(3.7e) and (3.11) is given by (4.24), with (4.24a) replaced by

2 π
2∑
i=1

(
( ~Xh

i . ~e1)Qh
i [ ~Xh

i ]t, ~χi |[ ~Xh
i ]ρ|
)h
−

2∑
i=1

(
[~Y h
i ]ρ . ~ν

h
i , [~χi]ρ . ~ν

h
i |[ ~Xh

i ]ρ|−1
)

=
2∑
i=1

(
~fhi , ~χi |[ ~Xh

i ]ρ|
)h
− 2 π

2∑
i=1

λhA,i

[(
~e1, ~χi |[ ~Xh

i ]ρ|
)

+
(

( ~Xh
i . ~e1)~τhi , [~χi]ρ

)]
− 2 π λhV

2∑
i=1

(
( ~Xh

i . ~e1)~νhi , ~χi |[ ~Xh
i ]ρ|
)

∀ ~χ ∈ Xh , (4.28)

where (λhA,1(t), λhA,2(t), λhV (t))T ∈ R3 are such that

Ai( ~X
h(t)) = Ai( ~X

h(0)) , i = 1, 2 , and V ( ~Xh(t)) = V ( ~Xh(0)) . (4.29)

Here, on recalling (2.12) and (2.13), we note that Ai( ~X
h(t)) denotes the surface area of

Shi (t), where, similarly to (2.1), we set

Shi (t) =
⋃
ρ∈Ii

Π3
2( ~Xh

i (ρ, t)) , i = 1, 2 .

Moreover, V ( ~Xh(t)) is the volume of the domain Ωh(t) with ∂Ωh(t) = ∪2
i=1Shi (t). We

remark that
Ai(~Z

h) = 2π
(
~Zh
i . ~e1, |[~Zh

i ]ρ|
)

~Zh ∈ Xh (4.30)

and

V (~Zh) = −π
2∑
i=1

(
(~Zh

i . ~e1)2, [[~Zh
i ]ρ]

⊥ . ~e1

)
~Zh ∈ Xh , (4.31)

recall (2.12), (2.13) and (4.4).

Theorem. 4.7. Let Assumption 4.2 be satisfied and let ( ~Xh(t), κh(t), ~Y h(t), ~mh(t),

C1 β
h(t), ~φh, λA,1(t), λA,2(t), λV (t))t∈(0,T ] be a solution to (4.28), (4.24b), (4.24c), (4.29).

Then the solution satisfies the stability bound

d

dt
Êh(t) + 2 π

2∑
i=1

(
~Xh
i . ~e1 |Qh

i [ ~Xh
i ]t|2, |[ ~Xh

i ]ρ|
)h

= 0 .
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Proof. Differentiating the three equations in (4.29) with respect to t, recalling (2.14),

(2.15), and choosing ~χ = ~Xh
t in (4.28) yields

2π
2∑
i=1

(
( ~Xh

i . ~e1) |Qh
i [ ~Xh

i ]t|2, |[ ~Xh
i ]ρ|
)h
−
(

[~Y h
i ]ρ . ~ν

h
i , [ ~X

h
i ]t,ρ . ~ν

h
i |[ ~Xh

i ]ρ|−1
)

=
2∑
i=1

(
~fhi , [ ~X

h
i ]t |[ ~Xh

i ]ρ|
)h
,

which is equivalent to (4.19). Hence the stability result follows as in the proof of Theo-
rem 4.4.

5 Fully discrete scheme

Let 0 = t0 < t1 < . . . < tM−1 < tM = T be a partitioning of [0, T ] into possibly variable

time steps ∆tm = tm+1 − tm, m = 0 → M − 1. For ~Xm = ( ~Xm
1 ,

~Xm
2 ) ∈ Xh, we let ~τmi

and ~νmi be the natural fully discrete analogues of ~τhi and ~νhi , recall (4.4). In addition, let
~ωmi ∈ V h

i and ~vmi ∈ V h
i , i = 1, 2, be the natural fully discrete analogues of (4.6) and (4.7).

Finally, let Qm
i ∈ [V h

i ]2×2 be the natural fully discrete analogue of Qh
i , recall (4.8).

We propose the following fully discrete approximation of (Ph)h, where we make use
of the reformulation in Remark 4.6.

(Pm)h Let ~X0 ∈ Xh, κ0 ∈ W h, ~Y 0 ∈ Yh and C1 β
0 ∈ R be given. For m = 0, . . . ,M − 1,

find δ ~Xm+1 ∈ Xh, with ~Xm+1 = ~Xm + δ ~Xm+1, κm+1 ∈ W h, C1 β
m+1 ∈ R, ~Y m+1 ∈ Yh

with
~Y m+1
i (1

2
) = 2π αGi ~e1 , i = 1, 2 C1 = 0 ,

~Y m+1
1 (1

2
)− ~Y m+1

2 (1
2
) = 2π [αG1 − αG2 ]~e1 ,

2∑
i=1

(
χi,(2−i) Ji [ ~Xm

i ]ρ, ~Y
m+1
i

)h
= 0 C1 = 1 ,

(5.1)
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such that

2 π
2∑
i=1

(
~Xm
i . ~e1Q

m
i

~Xm+1
i − ~Xm

i

∆tm
, ~χi |[ ~Xm

i ]ρ|

)h

−
2∑
i=1

(
[~Y m+1
i ]ρ, [~χi]ρ |[ ~Xm

i ]ρ|−1
)

= −
2∑
i=1

(
[~Y m
i ]ρ . ~τ

m
i , [~χi]ρ . ~τ

m
i |[ ~Xm

i ]ρ|−1
)

+ C1 β
m

2∑
i=1

(
χi,(2−i) Ji [~χi]ρ, ~Y

m
i

)h
− π

2∑
i=1

(
αi

[
Khi ( ~X

m
i , κ

m
i )− κi

]2

, ~χi . ~e1 |[ ~Xm
i ]ρ|+ ( ~Xm

i . ~e1)~τmi . [~χi]ρ

)h

+ 2 π
2∑
i=1

αi

([
Khi ( ~X

m
i , κ

m
i )− κi

]
(Zhi − 2),

~ωmi . ~e1

~Xm
i . ~e1

~χi . ~e1 |[ ~Xm
i ]ρ|

)h

+ 2 π
2∑
i=1

αi

([
Khi ( ~X

m
i , κ

m
i )− κi

]
(Zhi − 2)~e1, (~ν

m
i . [~χi]ρ)~τ

m
i + (~τmi . [~χi]ρ) (~ωmi − ~νmi )

)h
+

2∑
i=1

(
κmi (~Y m

i )⊥, [~χi]ρ

)h
− π ς

2∑
i=1

~χi(
1
2
) . ~e1 ∀ ~χ ∈ Xh , (5.2a)

2 π
2∑
i=1

(
~Xm
i . ~e1

(
αi [K

h
i ( ~X

m
i , κ

m+1
i )− κi]

)
, χi |[ ~Xm

i ]ρ|
)h
−

2∑
i=1

(
~Y m+1
i , χi ~ν

m
i |[ ~Xm

i ]ρ|
)h

= 0 ∀ χ ∈ W h , (5.2b)
2∑
i=1

(
κm+1
i ~νmi , ~ηi |[ ~Xm

i ]ρ|
)h

+ C1 β
m+1

2∑
i=1

(
χi,(2−i) Ji [ ~Xm

i ]ρ, ~ηi

)h
+

2∑
i=1

(
[ ~Xm+1

i ]ρ, [~ηi]ρ |[ ~Xm
i ]ρ|−1

)
= 0 ∀ ~η ∈

{
Yh
C0 C1 = 0 ,

Yh
C1 C1 = 1 .

(5.2c)

The linear system (5.2) in practice can be solved similarly to the techniques employed
by the authors in Barrett et al. (2007a,b, 2010). That is, we assemble the linear systems
on each curve separately, and then use projections to enforce the matching conditions in
Xh and Yh

C1 for the test and trial spaces. The resulting systems of linear equations can
be solved with preconditioned Krylov subspace iterative solvers. Here independent direct
solvers for the linear systems on each curve act as efficient preconditioners, where for the
direct factorisations we employ the UMFPACK package, see Davis (2004).

Assumption. 5.1. Let ~Xm satisfy Assumption 4.2 with ~Xh replaced by ~Xm. In the case
C1 = 1, we also assume that ~Xm

1 (q1,J1−1) 6= ~Xm
2 (q2,1).

Lemma. 5.2. Let Assumption 5.1 hold. Let ~Xm ∈ Xh, ~Y m ∈ Yh, κm ∈ W h, C1 β
m ∈ R

and α1, α2 ∈ R>0, κ1,κ2, α
G
1 , α

G
2 ∈ R be given. Then there exists a unique solution to

(Pm)h, (5.2).

Proof. Let ` = C1 ∈ {0, 1}. As we have a linear system of equations, with the same
number of equations as unknowns, existence follows from uniqueness. Hence we consider
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a solution to the homogeneous equivalent of (5.2), and need to show that this solution is

in fact zero. In particular, let δ ~X ∈ Xh, κ ∈ W h, C1 β ∈ R, ~Y ∈ Yh
C` be such that

2π
2∑
i=1

(
( ~Xm

i . ~e1)Qm
i δ

~Xi, ~χi |[ ~Xm
i ]ρ|

)h
−∆tm

2∑
i=1

(
[~Yi]ρ, [~χi]ρ |[ ~Xm

i ]ρ|−1
)

= 0

∀ ~χ ∈ Xh , (5.3a)

2 π
2∑
i=1

αi

(
~Xm
i . ~e1 κi, χi |[ ~Xm

i ]ρ|
)h
−

2∑
i=1

(
~Yi, χi ~ν

m
i |[ ~Xm

i ]ρ|
)h

= 0 ∀ χ ∈ W h , (5.3b)

2∑
i=1

(
κi ~ν

m
i , ~ηi |[ ~Xm

i ]ρ|
)h

+ C1 β

2∑
i=1

(
χi,(2−i) Ji [ ~Xm

i ]ρ, ~ηi

)h
+

2∑
i=1

(
(δ ~Xi)ρ, [~ηi]ρ |[ ~Xm

i ]ρ|−1
)

= 0 ∀ ~η ∈ Yh
C` , (5.3c)

C1

2∑
i=1

(
χi,(2−i) Ji [ ~Xm

i ]ρ, ~Yi

)h
= 0 . (5.3d)

Choosing ~χ = δ ~X in (5.3a), χ = κ in (5.3b) and ~η = ~Y in (5.3c) yields, that

2 π
2∑
i=1

(
~Xm
i . ~e1 |Qm

i δ ~Xi|2, |[ ~Xm
i ]ρ|

)h
+ 2 π

2∑
i=1

αi ∆tm

(
~Xm
i . ~e1 κ

2
i , |[ ~Xm

i ]ρ|
)h

= 0 . (5.4)

It follows from (5.4) and κ ∈ W h that κ = 0. Similarly, it follows from (5.4), δ ~X ∈ Xh

and (4.8) that δ ~X1(1
2
) = δ ~X2(1

2
) = ~0. Hence we can choose ~η = δ ~X ∈ Yh

C` in (5.3c) to
yield

2∑
i=1

(
|(δ ~Xi)ρ|2, |[ ~Xm

i ]ρ|−1
)

= 0 ,

which implies that δ ~X = ~0. In addition, if C1 = 1, we recall from (4.17) that choosing
~η = (χ1,J1 ~ek, χ2,0 ~ek) in (5.3c), for k = 1, 2, yields that

β ( ~Xm
1 (q1,J1)− ~Xm

1 (q1,J1−1) + ~Xm
2 (q2,1)− ~Xm

2 (q2,0)) = ~0 .

Hence Assumption 5.1 yields, on noting ~Xm
1 (q1,J1) = ~Xm

2 (q2,0), that β = 0. Moreover,

choosing ~χ = ~Y ∈ Yh
C` ⊂ Xh in (5.3a) shows that ~Yi is constant on I i, i = 1, 2. If C1 = 0,

then this constant must be zero. If C1 = 1, we observe from (5.3b) that ~Yi . ~ν
m
i = 0

on ∂Ii \ {1
2
}, which together with ~Y ∈ Yh

C` and Assumption 5.1 implies that ~Yi = ~0 on

∂Ii \ {1
2
}, i = 1, 2; recall also (4.5). As ~Yi must be constant we obtain ~Y = ~0. Thus we

have shown the existence of a unique solution to (Pm)h.
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5.1 Conserved flows

Here, following the approach in Barrett et al. (2019b, §4.3.1), we consider fully discrete
conserving approximations. In particular, on rewriting (5.2a) as

2π
2∑
i=1

(
~Xm
i . ~e1Q

m
i

~Xm+1
i − ~Xm

i

∆tm
, ~χi |[ ~Xm

i ]ρ|

)h

−
2∑
i=1

(
[~Y m+1
i ]ρ, [~χi]ρ |[ ~Xm

i ]ρ|−1
)

=
2∑
i=1

(
~fmi , ~χi |[ ~Xm

i ]ρ|
)h
,

we can formulate our surface area and volume conserving variant for (Pm)h as follows.

(PmA,V )h: Let ~X0 ∈ Xh, κ0 ∈ W h, ~Y 0 ∈ Yh and C1 β
0 ∈ R be given. For m =

0, . . . ,M − 1, find δ ~Xm+1 ∈ Xh, with ~Xm+1 = ~Xm + δ ~Xm+1, κm+1 ∈ W h, C1 β
m+1 ∈ R,

~Y m+1 ∈ Yh with (5.1), and λm+1
A,1 , λm+1

A,2 , λm+1
V ∈ R such that (5.2b), (5.2c) and

2π
2∑
i=1

(
~Xm
i . ~e1Q

m
i

~Xm+1
i − ~Xm

i

∆tm
, ~χi |[ ~Xm

i ]ρ|

)h

−
2∑
i=1

(
[~Y m+1
i ]ρ, [~χi]ρ |[ ~Xm

i ]ρ|−1
)

=
2∑
i=1

(
~fmi , ~χi |[ ~Xm

i ]ρ|
)h
− 2 π

2∑
i=1

λm+1
A,i

[(
~e1, ~χi |[ ~Xm

i ]ρ|
)

+
(

( ~Xm
i . ~e1)~τmi , [~χi]ρ

)]
− 2π λm+1

V

2∑
i=1

(
( ~Xm

i . ~e1)~νm, ~χi |[ ~Xm
i ]ρ|

)
∀ ~χ ∈ Xh , (5.5a)

(i) Ai( ~X
m+1) = Ai( ~X

0) , i = 1, 2 , (ii) V ( ~Xm+1) = V ( ~X0) (5.5b)

hold. Here we have recalled (4.30) and (4.31).

The nonlinear system of equations arising at each time level of (PmA,V )h can be solved
with a suitable iterative solution method, see below. In the simpler case of phase area
conserving flow, we need to find (δ ~Xm+1, κm+1, ~Y m+1, C1 βm+1, λm+1

A,1 , λm+1
A,2 , λm+1

V ) ∈ Xh×
W h×Yh×R×R2×{0} such that (5.2b), (5.2c), (5.5a) and (5.5b)(i) hold. Similarly, for vol-

ume conserving flow, we need to find (δ ~Xm+1, κm+1, ~Y m+1, C1 βm+1, λm+1
A,1 , λm+1

A,2 , λm+1
V ) ∈

Xh ×W h × Yh × R× {0}2 × R such that (5.2b), (5.2c), (5.5a) and (5.5b)(ii) hold.

Adapting the strategy in Barrett et al. (2019b, §4.3.1), we now describe a Newton
method for solving the nonlinear system (5.5), (5.2b) and (5.2c), where for ease of presen-
tation we suppress the dependence on βm+1. The linear system (5.5a), (5.2b) and (5.2c),
with (λm+1

A,1 , λm+1
A,2 , λm+1

V ) in (5.5a) replaced by λ = (λA,1, λA,2, λV ), can be written as: Find

(δ ~Xm+1(λ), κm+1(λ), ~Y m+1(λ)) ∈ Xh ×W h × Yh such that

Tm


~Y m+1(λ)

δ ~Xm+1(λ)

κm+1(λ)

 =


~gm

0

~0

+
2∑
`=1

λA,`


~K
m

`

0

~0

+ λV


~N
m

0

~0

 .
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Assuming the linear operator Tm is invertible, we obtain that
~Y m+1(λ)

δ ~Xm+1(λ)

κm+1(λ)

 = (Tm)−1



~gm

0

~0

+
2∑
`=1

λA,`


~K
m

`

0

~0

+ λV


~N
m

0

~0




=: (Tm)−1


~gm

0

~0

+
2∑
`=1

λA,`


~sm`,1

~sm`,2

sm`,3

+ λV


~qm

1

~qm
2

qm
3

 . (5.6)

It immediately follows from (5.6) that

∂λA,`
~Xm+1(λ) = ~sm`,2 , ` = 1, 2 , ∂λV

~Xm+1(λ) = ~qm
2
,

where ~Xm+1(λ) = ~Xm + δ ~Xm+1(λ). Hence

∂λA,`
A1( ~Xm+1(λ)) =

[
δ

δ ~Xm+1
A1( ~Xm+1(λ))

]
(~sm`,2) ,

∂λA,`
A2( ~Xm+1(λ)) =

[
δ

δ ~Xm+1
A2( ~Xm+1(λ))

]
(~sm`,2) ,

∂λA,`
V ( ~Xm+1(λ)) =

[
δ

δ ~Xm+1
V ( ~Xm+1(λ))

]
(~sm`,2) ,

for ` = 1, 2, and similarly for ∂λVAi(
~Xm+1(λ)), i = 1, 2, and ∂λV V ( ~Xm+1(λ)). Here

~sm`,2 ∈ Xh is the finite element function corresponding to the coefficients in ~sm`,2 for the

standard basis of Xh. Moreover, on recalling (2.14) and (2.15), we have defined the first

variations of Ai(~Z
h), for any ~Zh ∈ Xh, as[

δ

δ ~Zh
Ai(~Z

h)

]
(~η) = lim

ε→0

1

ε

(
Ai(~Z

h + ε ~η)− Ai(~Zh)
)

= 2π
(
~ηi . ~e1, |[~Zh

i ]ρ|
)

+ 2 π
(

(~Zh
i . ~e1) [~ηi]ρ, [~Z

h
i ]ρ |[~Zh

i ]ρ|−1
)
∀ ~η ∈ Xh ,

and similarly[
δ

δ ~Zh
V (~Zh)

]
(~η) = lim

ε→0

1

ε

(
V (~Zh + ε ~η)− V (~Zh)

)
= −2π

2∑
i=1

(
~Zh
i . ~e1, ~ηi . [[~Z

h
i ]ρ]

⊥
)
∀ ~η ∈ Xh .

We can then proceed as in Barrett et al. (2019b, (4.13)) to define a Newton iteration
for finding a solution to the nonlinear system (PmA,V )h. In practice this Newton iteration
always converged within a couple of iterations.
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6 Numerical results

As the fully discrete energy for the scheme (Pm)h, on recalling (4.12), we define

Êm+1 = π

2∑
i=1

(
αi

[
Khi ( ~X

m
i , κ

m+1
i )− κi

]2

, ~Xm
i . ~e1 |[ ~Xm

i ]ρ|
)h

− 2 π
2∑
i=1

αGi ~m
m+1
i . ~e1 + π ς

2∑
i=1

~Xm+1
i (1

2
) . ~e1 ,

where, e.g.,

~mm+1
2 =

(
1, χ2,0 |[ ~Xm

2 ]ρ|
) [
κm+1

2 ~ωm2
]

(1
2
) + C1 β

m+1 (1, χ2,0) [ ~Xm
2 ]ρ(

1
2
)

+
(

1, (χ2,0)ρ |[ ~Xm
2 ]ρ|−1

)
[ ~Xm+1

2 ]ρ(
1
2
)

is a fully discrete approximation to ~mh
2 defined in (4.24c), recall (5.2c).

Given ~X0, we set β0 = 0 and define the following initial data. First, we let ~κ0
i ∈ V h

i

be such that (
~κ0
i , ~ηi |[ ~X0

i ]ρ|
)h

+
(
~τ 0
i , [~ηi]ρ

)
= 0 ∀ ~ηi ∈ V h

i ,

and then define κ0
?,i = πhi [~κ0

i . ~v
0
i ], i = 1, 2. Now κh ∈ W h is defined as the orthogonal

projection of κ0
? onto W h. Moreover, we let ~Y 0

?,i ∈ V h
i be such that

~Y 0
?,i = 2π αi ~π

h
i

[
|~ω0
i |−1 ~X0

i . ~e1

[
Khi ( ~X

0
i , κ

0
i )− κi

]
~v0
i

]
,

and then define ~Y 0
† ∈ Yh

C0 as the orthogonal projection of ~Y 0
? onto Yh

C0 . Finally, we let
~Y 0 ∈ Yh via

~Y 0
i (qi,j) =

{
2π αGi ~e1 qi,j = 1

2
,

~Y 0
†,i(qi,j) qi,j ∈ I i \ {1

2
} ,

j = 0, . . . , Ji , i = 1, 2 .

Unless otherwise stated, we use α1 = α2 = 1, κ1 = κ2 = ς = αG1 = αG2 = 0 and
compute simulations of the unconstrained gradient flow. We will always use uniform time
steps, ∆tm = ∆t, m = 0, . . . ,M − 1. For the visualisations, we will display phase 1 in
red, and phase 2 in yellow.

6.1 C0–junctions

The evolution in Figure 2 starts from two symmetric surfaces that meet at a C0–junction
line. For the first four experiments in this subsection, we use the discretisation parameters
∆t = 10−3 and J1 = J2 = 65. The evolution appears to show that the fastest way to
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Figure 2: (C0) Plots at times t = 0, 1, 10.

Figure 3: (C0: ς = 0.02) Plots at times t = 0, 1, 10.

reduce the overall energy to zero is to flatten and to enlarge the surfaces. We conjecture
that the surfaces are going to converge to two flat disks with their radius converging to
infinity. By adding a non-zero line energy, the growth to infinity is prevented. In fact,
repeating the simulation for any positive ς will lead to the surfaces shrinking to a point.
An example is seen in Figure 3, where we used ς = 0.02. To conclude this subsection, we
show an experiment for phase area and volume conserving flow in Figure 4.

In Figure 5 we show a simulation for a flat disc separated into two phases, where phase
2 has two connected components. We note that the model and theory presented in this
paper, for simplicity, only considered the case of a single junction being present. But it is
a straightforward matter to extend the ideas, and the approximations, to more than one
junction. Clearly, in the example in Figure 5 two junctions are present. We let ∆t = 10−4

and (J1, J2) = (47, 84).

6.2 C1–junctions

We begin with a study of the tangential motion at the junction, recall Remark 4.5. To
this end, we compare the results from our scheme (5.2) to the ones from an alternative
fully discrete approximation that is based on (4.9) in place of (4.10). For the experiments
in Figure 6 we start with each phase represented by a quarter of a unit circle. As discreti-
sation parameters we use ∆t = 10−4 and (J1, J2) = (65, 9), so that the upper phase is
much finer discretised than the lower phase. On the continuous level, the initial data is a
steady state solution. However, the scheme based on (4.9) induces a tangential motion of
the junction point that is based purely on the discretisation. As a side effect, the whole
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Figure 4: (C0 with phase area and volume conservation, κ1 = −0.5, κ2 = −4) Plots at
times t = 0, 1.

surface moves up, which is not physical. In contrast, the evolution for our scheme (5.2)
is nearly stationary. We note that the condition (4.13) leads to some change at the lower
boundary, and we observe a small tangential motion of the junction point.

As another comparison, which highlights the rather subtle effects of changing (4.10)
to (4.9), we repeat the experiment in Figure 4, but now for a C1–junction with only phase
area preservation. As the discretisation parameters we use J1 = J2 = 65 and ∆t = 10−4.
While our scheme (5.2) shows a monotonically decreasing discrete energy, see Figure 7,
the fully discrete approximation based on (4.9) exhibits a highly oscillatory energy plot,
and some non-trivial tangential motion at the junction point that leads to rather large
elements near the junction. This in turn leads to bad curvature approximations at the
junction. We visualise this in Figure 8, where for the final solution of both schemes
we plot the approximations Khi ( ~X

M
i , κ

M
i ) of κSi , i = 1, 2, against arclength. Clearly,

the curvature approximations from the scheme based on (4.9) are completely unphysical.
The discretisations from our scheme (5.2), on the other hand , approximately satisfy
(2.18a) and (2.18b), which yield κS1 − κS2 = 3.5 and (κS1)s = (κS2)s, respectively, for
the continuous solution at the junction.

Hence, from now on, we only consider simulations for the scheme (5.2). To begin, we
perform a convergence experiment for the special case that the two phases have identical
physical properties, with κ1 = κ2 = κ = −1. Then a sphere of radius R(t), where R(t)
satisfies

R′(t) = − κ
R(t)

( 2
R(t)

+ κ) , R(0) = 1 , (6.1)

is a solution to (1.9) with λA,1 = λA,2 = λV = 0. The nonlinear ODE (6.1) is solved by

R(t) = z(t)− 2
κ , where z(t) is such that 1

2
(z2(t)− z2

0)− 4
κ (z(t)− z0) + 4

κ2 ln z(t)
z0

+ κ2 t =

0, with z0 = 1 + 2
κ . We use the solution to (6.1), with κ = −1, and a sequence of
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Figure 5: (C0 with phase area and volume conservation) Plots at times t = 0, 0.1, 1.

Figure 6: (C1) The plots show the initial data (left), the solution of the scheme based on
(4.9) at time t = 1 (middle), and the solution from (5.2) at time t = 1 (right).

approximations for the unit sphere to compute the error

‖Γ− Γh‖L∞ = max
m=1,...,M

max
i=1,2

max
j=0,...,Ji

∣∣∣| ~Xm
i (qi,j)| −R(tm)

∣∣∣
over the time interval [0, T ], for T = 1, between the true solution and the discrete solu-
tions for the scheme (5.2). This error only measures the accuracy of the normal motion of
the interface, accounting for the fact that the continuous problem has a whole family of
solutions, with the tangential motion essentially arbitrary. Nevertheless, in the absence of
tangential energetic forcings, any numerical method should ensure that the phase bound-
ary does not move tangentially during the evolution. In order to measure this property,
we also compute the quantity | ~XM(1

2
)−R(T )~e1| for the solutions of the scheme (5.2). As
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Figure 7: (C1 with phase area conservation, κ1 = −0.5, κ2 = −4) On the left we
show the solution at time t = 0.1, and a plot of the discrete energy, for a fully discrete
approximation based on (4.9). On the right we display the same for our scheme (5.2).

initial data we choose ~X0 ∈ Xh with

~X0
1 (q1,j) =

(
cos[(1

2
− q1,j) π + 0.1 cos((1

2
− 2 q1,j)π)]

sin[(1
2
− q1,j) π + 0.1 cos((1

2
− 2 q1,j) π)]

)
, j = 0, . . . , J1 ,

~X0
2 (q2,j) =

(
cos[(1

2
− q2,j) π + 0.1 cos((1

2
− 2 q2,j)π)]

sin[(1
2
− q2,j) π + 0.1 cos((1

2
− 2 q2,j) π)]

)
, j = 0, . . . , J2 ,

recall (4.1), which ensures that the evolutions for (5.2) will exhibit some tangential motion
within each phase. We use the time step size ∆t = 10−3 h2

Γ0 , where hΓ0 is the maximal
edge length of Γ0 = (Γ0

1,Γ
0
2), and report the computed errors in Table 1. The reported

errors appear to indicate an at least linear convergence rate for the two error quantities.

Figure 8: (C1 with phase area conservation, κ1 = −0.5, κ2 = −4) A plot of Khi ( ~X
M
i , κ

M
i ),

i = 1, 2, against arclength of ΓM1 ∪ ΓM2 , for the two experiments in Figure 7.
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(J1 − 1, J2 − 1) hΓ0 ‖Γ− Γh‖L∞ EOC | ~XM(1
2
)−R(T )~e1| EOC

(16,8) 2.3408e-01 4.4399e-02 — 3.9101e-02 —

(32,16) 1.1762e-01 1.3277e-02 1.75 1.8489e-02 1.09

(64,32) 5.8881e-02 3.8599e-03 1.79 9.1529e-03 1.02

(128,64) 2.9449e-02 1.0863e-03 1.83 4.5772e-03 1.00

(256,128) 1.4726e-02 3.8711e-04 1.49 2.2921e-03 1.00

Table 1: Errors for the convergence test with κ1 = κ2 = −1 for the scheme (Pm)h.

We remark that the final element ratios

rMi =
maxj=1,...,Ji | ~XM

i (qi,j)− ~XM
i (qi,j−1)|

minj=1,...,Ji | ~XM
i (qi,j)− ~XM

i (qi,j−1)|
, i = 1, 2 ,

have the value 1 for each of the runs displayed in Table 1. Of course, this is to be expected
from the equidistribution results in Remark 4.5.

In the next experiments we approximate well-known equilibrium shapes from Jülicher
and Lipowsky (1996, Fig. 8), see also the experiments in Barrett et al. (2018, Fig. 7.21).
To this end, we consider the volume and phase area conserving flow for initial surfaces
with reduced volumes vr ∈ {0.95, 0.91, 0.9, 0.885, 0.84, 0.8}, where

vr =
3V ( ~X0)

4 π (A1( ~X0)+A2( ~X0)
4π

)
3
2

=
6π

1
2 V ( ~X0)

(A1( ~X0) + A2( ~X0))
3
2

.

In addition, the surface areas are fixed so that A1( ~X0) + A2( ~X0) = 4π and so that the

two phases have a surface area ratio of A1( ~X0)

A1( ~X0)+A2( ~X0)
= 0.1. See Figure 9 for the initial

shapes, where the spatial discretisation parameters are given by (J1, J2) = (93, 421),
(91, 423), (90, 424), (92, 422), (95, 419) and (97, 417), respectively. For these experiments
we set ς = 9. Choosing a time step size of ∆t = 10−5, we integrate the volume and
phase area conserving flow until the discrete energy becomes stationary, and we report
on the obtained shapes in Figure 10. These configurations appear to agree well with the
computed shapes in Jülicher and Lipowsky (1996, Fig. 8).

Next we vary the Gaussian bending rigidity αG1 for the equilibrium shape in Figure 10
with vr = 0.9, and report on the new equilibrium shapes in Figure 11. It can clearly be
observed, that the interface between the two phases moves away from the neck position,
if |αG1 | increases. This can be explained with the help of the axisymmetric formulation
of the Gaussian curvature contribution in the energy. In fact, in the C1–case, when
~µ2(1

2
) = −~µ1(1

2
), we obtain, compare (2.10),

2π (αG1 − αG2 ) ~µ2(1
2
) . ~e1

as the Gaussian curvature contribution. This implies that the first component of ~µ2(1
2
)

prefers to be positive if αG1 − αG2 < 0, and prefers to be negative if αG1 − αG2 > 0. We
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Figure 9: The initial shapes for vr = 0.95, 0.91, 0.9, 0.885, 0.84 and 0.8, respectively.

Figure 10: (C1 with phase area and volume conservation, ς = 9) Approximations of the
equilibrium shapes for vr = 0.95, 0.91, 0.9, 0.885, 0.84 and 0.8, respectively.
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Figure 11: (C1 with phase area and volume conservation, ς = 9) Approximations of the
equilibrium shapes for vr = 0.9, when αG1 = −8,−2, 0, 2, 8. Apart from the cuts, we also
show the surfaces for αG1 = −8 (left) and for αG1 = 8 (right).

observe this behaviour in Figure 11, and in particular observe that phase 2 is in the neck
region if αG1 is negative and phase 1 is in the neck region if αG1 is positive, compare also
Baumgart et al. (2005, Fig. 5). For the numerical results in Figure 11 we remark that the
condition (1.3) is only satisfied if αG1 ∈ [−2, 2]. Yet also for values outside this interval,
our numerical method is able to integrate the evolution, and the movement of the phase
boundary becomes ever more pronounced. In addition, we show some equilibrium shapes
for αG1 ∈ [−2, 2] when the surface has a reduced volume of vr = 0.885. In this case, we
observe an induced pinch-off for αG1 = 2, see Figure 12.

In the next set of numerical results, we consider the case that one of the phases has
two connected components. These results are inspired by the vesicle shapes found in
experiments. First we consider a surface with reduced volume vr = 0.956, total surface
area A1 + A2 = 4 π and with a phase area ratio of A1/(A1 + A2) = 0.46. Our numerical
results in Figure 13 show some resemblance with Baumgart et al. (2003, Fig. 1d), see also
Wang and Du (2008, Fig. 4). Next we consider the shape in Baumgart et al. (2003, Fig.
2f), see also the final simulated surface in Wang and Du (2008, Fig. 3). We consider a
surface with reduced volume vr = 0.8, total surface area A1 +A2 = 4π and with a phase
area ratio of A1/(A1 +A2) = 0.09. Our numerical results are shown in Figure 14 and the
results resemble the situation in the neck region of the experiments of Baumgart et al.
(2003, Fig. 2f).

A Consistency of the weak formulations

Starting from our weak formulations, (3.7) with (3.7a) replaced by (3.10), in this appendix
we derive the strong form for the L2–gradient flow of (2.11), together with the boundary
conditions that need to hold on ∂Ii, for i = 1, 2. Here we will make extensive use of
Barrett et al. (2019e, Appendix A), and for ease of exposition we will often suppress the
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Figure 12: (C1 with phase area and volume conservation, ς = 9) Approximations of the
equilibrium shapes for vr = 0.885, when αG1 = −2, 0, 2. Apart from the cuts, we also show
the surfaces for αG1 = −2 (left) and for αG1 = 2 (right). Note that for αG1 = 2 the gradient
flow encounters pinch-off.

Figure 13: (C1 with phase area and volume conservation, ς = 50) Approximations of the
equilibrium shapes for vr = 0.956. The surface for (α1, α2) = (0.01, 0.01), as well as the
cuts for (α1, α2) = (0.01, 0.01) (left), (α1, α2) = (1, 0.01) (middle) and (α1, α2) = (0.01, 1)
(right).
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Figure 14: (C1 with phase area and volume conservation, ς = 9) Approximations of the
equilibrium shapes for vr = 0.8, when (α1, α2) = (1, 0.1), (1, 0.5), (1, 1), (0.5, 1), (0.1, 1)
and κ1 = 2 (top), as well as for κ1 = 0 (bottom). On the sides we show the surfaces for
(α1, α2) = (1, 0.1) (left) and (α1, α2) = (0.1, 1) (right).

dependence on time. We begin by writing (3.10) as

2 π
2∑
i=1

((~xi . ~e1) [~xi]t . ~νi, ~χi . ~νi |[~xi]ρ|) =
2∑
i=1

Di(~χ) ∀ ~χ ∈ X ,

where

Di(~χ) =
(
[~yi]ρ . ~νi, [~χi]ρ . ~νi |[~xi]ρ|−1

)
+
(
~fi, ~χi |[~xi]ρ|

)
− 2 π λV ((~xi . ~e1)~νi, ~χi |[~xi]ρ|)

− 2 π λA,i [(~e1, ~χi |[~xi]ρ|) + ((~xi . ~e1)~τi, [~χi]ρ)] , i = 1, 2 . (A.1)

On noting that the right hand side of (A.1) corresponds to the right hand side of Barrett
et al. (2019e, (4.2)) for a single curve, we can apply the results from Barrett et al. (2019e,
Appendix A) to show that the strong formulations for the flows in the interior are given
by (2.16), while the boundary conditions on ∂Ii \ {1

2
}, for i = 1, 2, are (2.19). Hence

it only remains to derive the conditions that need to hold at the junction, i.e. on {1
2
}.

Collecting the contributions that arise from the boundary terms B1, . . . , B5 in Barrett
et al. (2019e, Appendix A.1) at the junction point for each of the two curves, we obtain
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that the weak formulation enforces

2∑
i=1

{
(−1)i+1([~yi]s . ~νi) ~χi . ~νi − π ς ~χi . ~e1 − π (−1)i+1 ~xi . ~e1 (αi [κSi − κi]

2 + 2λA,i) ~χi . ~τi

−2 π αi (−1)i+1 (κSi − κi) (~τi . ~e1) ~χi . ~νi + (−1)i+1
[
κi ~χi . ~y⊥i

]}
= 0 (A.2)

at the junction. We note from (3.6) and (2.4) that

~yi . ~νi = 2π ~xi . ~e1 αi (κSi − κi) , where κSi = κi −
~νi . ~e1

~xi . ~e1

in I i , i = 1, 2 . (A.3)

Moreover, we recall from Barrett et al. (2019e, (3.24)) that it can be shown that

κi ~y⊥i + ([~yi]s . ~νi)~νi = κi (~yi . ~νi)~τi + (~yi . ~νi)s ~νi in I i , i = 1, 2 . (A.4)

It follows from (A.4) and (A.3) that we can combine the first and last term on the left
hand side of (A.2) to give

2π
2∑
i=1

(−1)i+1 {κi ~xi . ~e1 αi (κSi − κi) ~χi . ~τi + αi [~xi . ~e1 (κSi)s + ~τi . ~e1 (κSi − κi)] ~χi . ~νi} .

Hence, on using the notations ~x = ~x1 = ~x2 and ~χ = ~χ1 = ~χ2 at the point 1
2
, and on

recalling (2.9), it follows from (A.2) that

2 π ~x .~e1

2∑
i=1

[
(−1)i+1 αi (κSi)s ~νi − (1

2
αi (κSi − κi)

2 + λA,i) ~µi + αi (κSi − κi)κi ~µi

−1
2

ς

~x .~e1

~e1

]
. ~χ = 0 .

As ~χ ∈ X is arbitrary, we obtain from the above identity that

2∑
i=1

[
(−1)i+1 αi (κSi)s ~νi − (1

2
αi (κSi − κi)

2 + λA,i − αi (κSi − κi)κi) ~µi
]
− ς

~x .~e1

~e1

= ~0 on I1 ∩ I2 . (A.5)

We first consider the case of a C0–junction, i.e. C1 = 0. Then it follows from (3.7d) and
(A.3) that

αi (κSi − κi) = αGi
~νi . ~e1

~x .~e1

on ∂Ii \ {0, 1} , i = 1, 2 ,

which is (2.17a). Using this identity in (A.5), we obtain with the help of (2.4) that

2∑
i=1

[
(−1)i+1 αi (κSi)s ~νi − (1

2
αi (κSi − κi)

2 + λA,i + αGi KSi) ~µi
]
− ς

~x .~e1

~e1 = ~0 ,

which is (2.17b). This shows that the weak formulation implies the boundary conditions
at the junction in the C0–case.
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In the C1–case, i.e. for C1 = 1, we recall from Remark 3.1 that

~y1 − ~y2 = 2π [αG1 − αG2 ]~e1 on I1 ∩ I2 , (A.6)

and that (3.8) holds. Applying integration by parts to the two second order terms in
(3.8), and observing the fact that ~η1(1

2
) = ~η2(1

2
) as (~η1, ~η2) ∈ YC1 , yields

[~x1]ρ
|[~x1]ρ|

− [~x2]ρ
|[~x2]ρ|

= ~0 on I1 ∩ I2 ,

which, on using (2.2) and (2.9), implies that

~ν := ~ν2 = ~ν1 and ~µ := ~µ2 = −~µ1 on I1 ∩ I2 . (A.7)

On combining (A.6) and (3.7b), which states that 2 π αi ~xi . ~e1 (κSi −κi) = ~yi . ~νi in I i, we
obtain, on recalling the first definition in (A.7), that

[αi (κSi − κi)]
2
1 − [αGi ]21

~ν .~e1

~x .~e1

= 0 on I1 ∩ I2 ,

which is (2.18a). Moreover, substituting (A.7) into (A.5) gives

2∑
i=1

(−1)i+1
[
αi (κSi)s ~ν + (1

2
αi (κSi − κi)

2 + λA,i − αi (κSi − κi)κi) ~µ
]
− ς

~x .~e1

~e1 = ~0

at the junction, and taking the inner products with ~ν and ~µ leads to

−[αi (κSi)s]21 − ς
~ν .~e1

~x .~e1

= 0 on I1 ∩ I2

and

[−1
2
αi (κSi − κi)

2 + αi (κSi − κi)κi − λA,i]21 − ς
~µ .~e1

~x .~e1

= 0 on I1 ∩ I2 .

The last two equations coincide with (2.18b) and (2.18c), respectively. Hence we have
shown that in the C1–case, the weak formulation implies the correct boundary conditions
(2.18).
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