31 research outputs found

    Synthesis and Characterization of Nanomaterial Based on Halloysite and Hectorite Clay Minerals Covalently Bridged

    Get PDF
    Halloysite is an aluminosilicate clay with a predominantly hollow tubular structure (HNTs) able to act as a nanocontainer for the encapsulation of several chemicals. However, HNTs possess low affinity for metal ions in their pristine form and they need to be modified for improving their adsorption capabilities. Therefore, to overcome this issue herein we report a straightforward approach for the covalent modification of the external surface of halloysite nanotubes with hectorite clay. Compared to halloysite, hectorite possesses a lamellar structure with higher cation exchange capacity. The covalent linkage between the two clays was verified by several techniques (FTIR spectroscopy, 13C CP-MAS NMR, TGA, -potential, DLS, and XRD measurements) and the morphology was imaged by TEM investigations. As proof of concept the adsorption ability of the obtained nanomaterial in comparison to pristine clays was proved using ciprofloxacin and silver ions chosen as models for their different chemical characteristics.University of PalermoPON "AIM: Attrazione e Mobilita Internazionale" 1808223-1University of Granada P18-RT-378

    Hectorite/Phenanthroline-Based Nanomaterial as Fluorescent Sensor for Zn Ion Detection: A Theoretical and Experimental Study

    Get PDF
    The development of fluorescent materials that can act as sensors for the determination of metal ions in biological fluids is important since they show, among others, high sensitivity and specificity. However, most of the molecules that are used for these purposes possess a very low solubility in aqueous media, and, thus, it is necessary to adopt some derivation strategies. Clay minerals, for example, hectorite, as natural materials, are biocompatible and available in large amounts at a very low cost that have been extensively used as carrier systems for the delivery of different hydrophobic species. In the present work, we report the synthesis and characterization of a hectorite/phenanthroline nanomaterial as a potential fluorescent sensor for Zn ion detection in water. The interaction of phenanthroline with the Ht interlaminar space was thoroughly investigated, via both theoretical and experimental studies (i.e., thermogravimetry, FT-IR, UV-vis and fluorescence spectroscopies and XRD measurements), while its morphology was imaged by scanning electron microscopy. Afterwards, the possibility to use it as sensor for the detection of Zn2+ ions, in comparison to other metal ions, was investigated through fluorescent measurements, and the stability of the solid Ht/Phe/Zn complex was assessed by different experimental and theoretical measurements

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    ECMO for COVID-19 patients in Europe and Israel

    Get PDF
    Since March 15th, 2020, 177 centres from Europe and Israel have joined the study, routinely reporting on the ECMO support they provide to COVID-19 patients. The mean annual number of cases treated with ECMO in the participating centres before the pandemic (2019) was 55. The number of COVID-19 patients has increased rapidly each week reaching 1531 treated patients as of September 14th. The greatest number of cases has been reported from France (n = 385), UK (n = 193), Germany (n = 176), Spain (n = 166), and Italy (n = 136) .The mean age of treated patients was 52.6 years (range 16–80), 79% were male. The ECMO configuration used was VV in 91% of cases, VA in 5% and other in 4%. The mean PaO2 before ECMO implantation was 65 mmHg. The mean duration of ECMO support thus far has been 18 days and the mean ICU length of stay of these patients was 33 days. As of the 14th September, overall 841 patients have been weaned from ECMO support, 601 died during ECMO support, 71 died after withdrawal of ECMO, 79 are still receiving ECMO support and for 10 patients status n.a. . Our preliminary data suggest that patients placed on ECMO with severe refractory respiratory or cardiac failure secondary to COVID-19 have a reasonable (55%) chance of survival. Further extensive data analysis is expected to provide invaluable information on the demographics, severity of illness, indications and different ECMO management strategies in these patients

    The use of ethylenediaminetetraacetic acid as enhancing agent for the remediation of a lead polluted soil

    No full text
    Result: for Pb extraction experiments from a contaminated soil performed with citric acid and ethylenediaminetetraacetic acid disodium salt (Na(2)EDTA) indicate that Na(2)EDTA is much more efficient. The Pb removal after 5 successive extractions using 24 mL of 0.1 M Na(2)EDTA solutions and 8 g of soil is close to 100%. Other non-toxic metals such as Ca and Mg, that are present in important concentrations in this soil, are also solubilized, but important differences in the behavior of each metal are observed. A local equilibrium model is used for the interpretation of the results of these batch experiments; the experimental and the model results are in a fairly good agreement. From these results it is concluded that Na(2)EDTA presents almost ideal characteristics for its use as enhancing agent for an electrokinetic remediation of the soil. Therefore, experiments were performed, in which the pH value is controlled at both electrode-compartments using Na(2)EDTA at the cathode and NaOH at the anode, aiming to the recovery of PbEDTA(2-) at the anode. Nevertheless, no significant amounts of lead are recovered. The possible negative effects of the electric current over the performance of Na(2)EDTA are studied using a two-compartment cell for electrodialytic remediation with an important electrical current and comparing the results with those obtained under identical conditions without current. It is concluded that the electric current produce no negative effects. Therefore, the cancelling effects of the electromigration and the electroosmotic movement are considered as the most probable explanation for the experimental results. (C) 2015 Elsevier Ltd. All rights reserved

    Innovative membrane containing iron-based layered double hydroxide intercalated with phyto therapeutic diterpenoid

    No full text
    This work developed an innovative membrane based on the high-performance PEBAX®2533 (PEBA) block copolymer and particles of iron-based layered double hydroxide (LDH) (Mg4FeAl layer composition) intercalated with phytotherapeutic abietate anions (ABI); both guest and host species are active in the promotion of wound healing. The presence of conjugated double bonds in the ABI structure promotes chemical reactions confronting its stability. Hence, LDH can protect the phytochemical species and promote its modified release. Aiming the development of wound dressings, LDH-ABI particles were immobilized in a biocompatible polymer (PEBA) by simple casting method. All samples were characterized by X-ray diffraction (XRD), vibrational (infrared and Raman) spectroscopies, thermogravimetry analysis coupled to mass spectrometry (TGA-MS), elemental chemical analyses and, in the case of polymer composites, by mechanical tests. Although the intercalation of organic anions into iron-based LDH materials is challenging, ABI intercalation was successful and using one-pot method (coprecipitation at constant pH value), according to XRD data. Additionally, spectroscopic techniques indicated the integrity of the ABI chemical structure after intercalation. The sodium abietate (NaABI) salt and the PEBA_NaABI membrane were also prepared to evaluate the effect of LDH in the formulations. In vitro release assays in saline solution at 32 °C showed the release (or solubilization) of around 3 and 5 wt./wt% of the ABI amount from LDH and salt, respectively, after 10 h. Comparatively, ABI release from the PEBA_Mg4FeAl-ABI and PEBA_NaABI formulations was improved to 20 and 22 wt%, respectively. The improvement in ABI release profiles from the membranes was related to the decrease in particles aggregation and improved media permeation. LDH particles released bioactive Mg2+ cations in the saline solution and, unlike NaABI particles, also improved the mechanical performance of the polymer. Thus, PEBA_Mg4FeAl-ABI showed promising as a component of wound dressings

    Wound healing activity of nanoclay/spring water hydrogels

    No full text
    Background: hydrogels prepared with natural inorganic excipients and spring waters are commonly used in medical hydrology. Design of these clay-based formulations continues to be a field scarcely addressed. Safety and wound healing properties of different fibrous nanoclay/spring water hydrogels were addressed. Methods: in vitro biocompatibility, by means of MTT assay, and wound healing properties were studied. Confocal Laser Scanning Microscopy was used to study the morphology of fibroblasts during the wound healing process. Results: all the ingredients demonstrated to be biocompatible towards fibroblasts. Particularly, the formulation of nanoclays as hydrogels improved biocompatibility with respect to powder samples at the same concentration. Spring waters and hydrogels were even able to promote in vitro fibroblasts motility and, therefore, accelerate wound healing with respect to the control. Conclusion: fibrous nanoclay/spring water hydrogels proved to be skin-biocompatible and to possess a high potential as wound healing formulations. Moreover, these results open new prospects for these ingredients to be used in new therapeutic or cosmetic formulations

    CLAYS IN COSMETICS AND PERSONAL-CARE PRODUCTS

    No full text
    Clays are used in various cosmetic formulations, such as sunscreens, toothpastes, deodorants, creams, hair cosmetics, makeups, nail polish, facial masks, and shampoos, among others, to improve the organoleptic and physicochemical characteristics, to increase the stability, or to facilitate elaboration. Together with their technological functionalities, clays are cosmetologically active ingredients with cleaning, anti-aging, anti-wrinkling, and sun-care functionalities. Talc, kaolinite, mica, and some smectites are the clay minerals used most frequently in cosmetic products, but several other phyllosilicates as well as modified and synthetic clays are also used. Sometimes, clays are useful in the design of cosmetics just because they are made of rigid, small, and anisometric particles. Kaolinite and mica are made of hard prismatic particles which are lightly abrasive over the skin, teeth, or hair. Electric charges in smectites result in ion-exchange capacities useful in the loading of active cosmetics but also adsorbing and cleaning waste substances. Intermediate net negative charges of smectites result in layer expansion in polar media and specific rheological properties that are very useful in cosmetic formulations. The absence of charged particles in talc and kaolin make them flow easily resulting in lubricant effects. Protection against radiation from the sun by clay particles and decorative effects complete the possibilities of clays in cosmetics. The nomenclature for clays used as ingredients in cosmetics follows historical use and the names of commercial products, rather than following strict compositional principles. In this sense, an effort was made here to correlate the names of the minerals that make up each of the clay-based cosmetic ingredients

    Prodrug based on halloysite delivery systems to improve the antitumor ability of methotrexate in leukemia cell lines

    No full text
    The prodrug approach, as well as the development of specific systems able to deliver a chemotherapeutic agent in the target site, decreasing the side effects often associated with its administration, are still a challenging. In this context, both methotrexate drug molecules (MTX) and biotin ligand moieties, whose receptors are overexpressed on the surface of several cancer cells, were loaded on halloysite nanotubes (HNTs) to develop nanomaterial based on multifunctional and “smart” delivery systems. To highlight the crucial role played by biotin, carrier systems based on HNTs and MTX were also synthetized. In detail, several approaches were envisaged: i) a supramolecular interaction between the clay and the drug; ii) a covalent grafting of the drug onto the HNTs external surface and, iii) a combination of both approaches. The nanomaterials obtained were characterized by thermogravimetric analysis, FT-IR, and UV-vis spectroscopies, DLS and ζ−potential measurements and the morphologies were imaged by HAADF/STEM investigations. Kinetic release experiments at different pH conditions were also performed. Finally, as a proof-of-concept application of our pro-drug delivery systems based on HNTs in cancer therapy, the cytotoxic effects were evaluated on acute myeloid leukemia cell lines, HL60 and its multidrug resistance variant, HL60R. The obtained results showed that both the MTX prodrug system and the biotinylated ones played a crucial role in the biological activity and, they are promising agents for the cancer treatments
    corecore