627 research outputs found

    Rose Bengal Immobilized on Supported Ionic‐Liquid‐like Phases: An Efficient Photocatalyst for Batch and Flow Processes

    Get PDF
    This is the peer reviewed version of the following article: Rose Bengal Immobilized on Supported Ionic‐Liquid‐like Phases: An Efficient Photocatalyst for Batch and Flow Processes, which has been published in final form at https://doi.org/10.1002/cssc.201901533. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.The catalytic activity of Rose Bengal (RB) immobilized on supported ionic liquid (IL)‐like phases was evaluated as a polymer‐supported photocatalyst. In these systems, the polymer was designed to play a pivotal role. The polymeric backbone adequately modified with IL‐like moieties (supported IL‐like phases, SILLPs) was not just an inert support for the dye but controlled the accessibility of reagents/substrates to the active sites and provided specific microenvironments for the reaction. The structure of SILLPs could be finetuned to adjust the catalytic efficiency of the RB‐SILLP composites, achieving systems that were more active and stable than the related systems in the absence of IL‐like units

    Ripretinib in gastrointestinal stromal tumor: the long-awaited step forward

    Get PDF
    Ripretinib; Sarcoma; Inhibidor de la tirosina cinasaRipretinib; Sarcoma; Inhibidor de la tirosina quinasaRipretinib; Sarcoma; Tyrosine kinase inhibitorGastrointestinal stromal tumor (GIST) represents a paradigm for clinically effective targeted inhibition of oncogenic driver mutations in cancer. Five drugs are currently positioned as the standard of care for the treatment of advanced or metastatic GIST patients. This is the result of continuous, deep understanding of KIT and PDGFRA GIST oncogenic drivers as well as the resistance mechanisms associated to tumor progression. However, the complexity of GIST molecular heterogeneity is an evolving field, and critical questions remain open. Specifically, the clinical benefit of approved and/or investigated targeted agents is strikingly modest at advanced stages of the disease when compared with the activity of first-line imatinib. Ripretinib is a novel switch-pocket inhibitor with broad activity against KIT and PDGFRA oncoproteins and has recently demonstrated antitumoral activity across phase I to phase III clinical trials. Therefore, ripretinib has emerged as a new standard of care for advanced, multi-resistant GIST patients. Based on this data, the Food and Drug Administration has granted in 2020 the approval of ripretinib for GIST patients after progression to imatinib, sunitinib and regorafenib. This, in turn, constitutes a major breakthrough in sarcoma drug development, as there have not been new treatment approvals in GIST for nearly a decade. Herein, we provide a critical review on the preclinical and clinical development of ripretinib in GIST. Furthermore, we seek to assess the biological and clinical impact of this new standard of care on the course of the disease, aiming to provide an insight on future treatments strategies for the next coming years.The authors received no financial support for the research, authorship, and/or publication of this article

    Shallow vs deep learning architectures for white matter lesion segmentation in the early stages of multiple sclerosis

    Get PDF
    In this work, we present a comparison of a shallow and a deep learning architecture for the automated segmentation of white matter lesions in MR images of multiple sclerosis patients. In particular, we train and test both methods on early stage disease patients, to verify their performance in challenging conditions, more similar to a clinical setting than what is typically provided in multiple sclerosis segmentation challenges. Furthermore, we evaluate a prototype naive combination of the two methods, which refines the final segmentation. All methods were trained on 32 patients, and the evaluation was performed on a pure test set of 73 cases. Results show low lesion-wise false positives (30%) for the deep learning architecture, whereas the shallow architecture yields the best Dice coefficient (63%) and volume difference (19%). Combining both shallow and deep architectures further improves the lesion-wise metrics (69% and 26% lesion-wise true and false positive rate, respectively).Comment: Accepted to the MICCAI 2018 Brain Lesion (BrainLes) worksho

    CASA-Mot technology: how results are affected by the frame rate and counting chamber

    Get PDF
    For over 30 years, CASA-Mot technology has been used for kinematic analysis of sperm motility in different mammalian species, but insufficient attention has been paid to the technical limitations of commercial computer-aided sperm analysis (CASA) systems. Counting chamber type and frame rate are two of the most important aspects to be taken into account. Counting chambers can be disposable or reusable, with different depths. In human semen analysis, reusable chambers with a depth of 10 mm are the most frequently used, whereas for most farm animal species it is more common to use disposable chambers with a depth of 20 mm. The frame rate was previously limited by the hardware, although changes in the number of images collected could lead to significant variations in some kinematic parameters, mainly in curvilinear velocity (VCL). A frame rate of 60 frames s(-1) is widely considered to be the minimum necessary for satisfactory results. However, the frame rate is species specific and must be defined in each experimental condition. In conclusion, we show that the optimal combination of frame rate and counting chamber type and depth should be defined for each species and experimental condition in order to obtain reliable results

    Impact of glucocorticoid on a cellular model of parkinson’s disease: Oxidative stress and mitochondrial function

    Get PDF
    Stress seems to contribute to the neuropathology of Parkinson’s disease (PD), possibly by dysregulation of the hypothalamic–pituitary–adrenal axis. Oxidative distress and mitochondrial dysfunction are key factors involved in the pathophysiology of PD and neuronal glucocorticoid-induced toxicity. Animal PD models have been generated to study the effects of hormonal stress, but no in vitro model has yet been developed. Our aim was to examine the impact of corticosterone (CORT) administration on a dopaminergic neuronal cell model of PD induced by the neurotoxin MPP+, as a new combined PD model based on the marker of endocrine response to stress, CORT, and oxidative-mitochondrial damage. We determined the impact of CORT, MPP+ and their co-incubation on reactive oxygen species production (O2−• ), oxidative stress cellular markers (advanced-oxidation protein products and total antioxidant status), mitochondrial function (mitochondrial membrane potential and mitochondrial oxygen consumption rate) and neurodegeneration (Fluoro-Jade staining). Accordingly, the administration of MPP+ or CORT individually led to cell damage compared to controls (p < 0.05), as determined by several methods, whereas their co-incubation produced strong cell damage (p < 0.05). The combined model described here could be appropriate for investigating neuropathological hallmarks and for evaluating potential new therapeutic tools for PD patients suffering mild to moderate emotional stress

    Comments on ”A new conformal FDTD for lossy thin panels”

    Get PDF
    In the paper ”A new conformal FDTD for lossy thin panels” by M. R. Cabello et al., the appearance of spiky antiresonances in the simulation of the shielding properties of lossy thin-shell spherical cavities by FDTD, was categorised as spurious solutions. In this document, we briefly clarify this topic, and show that these solutions are not really spurious in the common interpretation of the term. Actually, they correspond to physical solutions, appearing due to lack of symmetry inherent to the staggered co-location nature of field components in FDTD

    IP3 sensitizes TRPV4 channel to the mechano- and osmotransducing messenger 5′-6′-epoxyeicosatrienoic acid

    Get PDF
    Mechanical and osmotic sensitivity of the transient receptor potential vanilloid 4 (TRPV4) channel depends on phospholipase A2 (PLA2) activation and the subsequent production of the arachidonic acid metabolites, epoxyeicosatrienoic acid (EET). We show that both high viscous loading and hypotonicity stimuli in native ciliated epithelial cells use PLA2–EET as the primary pathway to activate TRPV4. Under conditions of low PLA2 activation, both also use extracellular ATP-mediated activation of phospholipase C (PLC)–inositol trisphosphate (IP3) signaling to support TRPV4 gating. IP3, without being an agonist itself, sensitizes TRPV4 to EET in epithelial ciliated cells and cells heterologously expressing TRPV4, an effect inhibited by the IP3 receptor antagonist xestospongin C. Coimmunoprecipitation assays indicated a physical interaction between TRPV4 and IP3 receptor 3. Collectively, our study suggests a functional coupling between plasma membrane TRPV4 channels and intracellular store Ca2+ channels required to initiate and maintain the oscillatory Ca2+ signal triggered by high viscosity and hypotonic stimuli that do not reach a threshold level of PLA2 activation

    Neuronal Metabolism and Neuroprotection: Neuroprotective Effect of Fingolimod on Menadione-Induced Mitochondrial Damage

    Get PDF
    Imbalance in the oxidative status in neurons, along with mitochondrial damage, are common characteristics in some neurodegenerative diseases. The maintenance in energy production is crucial to face and recover from oxidative damage, and the preservation of different sources of energy production is essential to preserve neuronal function. Fingolimod phosphate is a drug with neuroprotective and antioxidant actions, used in the treatment of multiple sclerosis. This work was performed in a model of oxidative damage on neuronal cell cultures exposed to menadione in the presence or absence of fingolimod phosphate. We studied the mitochondrial function, antioxidant enzymes, protein nitrosylation, and several pathways related with glucose metabolism and glycolytic and pentose phosphate in neuronal cells cultures. Our results showed that menadione produces a decrease in mitochondrial function, an imbalance in antioxidant enzymes, and an increase in nitrosylated proteins with a decrease in glycolysis and glucose-6-phosphate dehydrogenase. All these effects were counteracted when fingolimod phosphate was present in the incubation media. These effects were mediated, at least in part, by the interaction of this drug with its specific S1P receptors. These actions would make this drug a potential tool in the treatment of neurodegenerative processes, either to slow progression or alleviate symptoms

    Cost-Utility Analysis of a Medication Adherence Management Service Alongside a Cluster Randomized Control Trial in Community Pharmacy.

    Full text link
    Background: It is necessary to determine the cost utility of adherence interventions in chronic diseases due to humanistic and economic burden of non-adherence. Purpose: To evaluate, alongside a cluster-randomized controlled trial, the cost-utility of a pharmacist-led medication adherence management service (MAMS) compared with usual care in community pharmacies. Materials and Methods: The trial was conducted over six months. Patients with treatments for hypertension, asthma or chronic obstructive pulmonary disease (COPD) were included. Patients in the intervention group (IG) received a MAMS based on a brief complex intervention, whilst patients in the control group (CG) received usual care. The cost–utility analysis adopted a health system perspective. Costs related to medications, healthcare resources and adherence intervention were included. The effectiveness was estimated as quality-adjusted life years (QALYs), using a multiple imputation missing data model. The incremental cost–utility ratio (ICUR) was calculated on the total sample of patients. Results: A total of 1186 patients were enrolled (IG: 633; CG: 553). The total intervention cost was estimated to be € 27.33 ± 0.43 per patient for six months. There was no statistically significant difference in total cost of medications and healthcare resources per patient between IG and CG. The values of EQ-5D-5L at 6 months were significantly higher in the IG [IG: 0.881 ± 0.005 vs CG: 0.833 ± 0.006; p = 0.000]. In the base case, the service was more expensive and more effective than usual care, resulting in an ICUR of € 1,494.82/QALY. In the complete case, the service resulted in an ICUR of € 2,086.30/QALY, positioned between the north-east and south-east quadrants of the cost–utility plane. Using a threshold value of € 20,000/QALY gained, there is a 99% probability that the intervention is cost-effective. Conclusion: The medication adherence management service resulted in an improvement in the quality of life of the population with chronic disease, with similar costs compared to usual care. The service is cost-effective

    TEMPRANILLO is a regulator of juvenility in plants

    Get PDF
    Many plants are incapable of flowering in inductive daylengths during the early juvenile vegetative phase (JVP). Arabidopsis mutants with reduced expression of TEMPRANILLO (TEM), a repressor of FLOWERING LOCUS T (FT) had a shorter JVP than wild-type plants. Reciprocal changes in mRNA expression of TEM and FT were observed in both Arabidopsis and antirrhinum, which correlated with the length of the JVP. FT expression was induced just prior to the end of the JVP and levels of TEM1 mRNA declined rapidly at the time when FT mRNA levels were shown to increase. TEM orthologs were isolated from antirrhinum (AmTEM) and olive (OeTEM) and were expressed most highly during their juvenile phase. AmTEM functionally complemented AtTEM1 in the tem1 mutant and over-expression of AmTEM prolonged the JVP through repression of FT and CONSTANS (CO). We propose that TEM may have a general role in regulating JVP in herbaceous and woody species
    corecore