35 research outputs found

    Country-level gender inequality is associated with structural differences in the brains of women and men

    Get PDF
    男女間の不平等と脳の性差 --男女間の不平等は脳構造の性差と関連する--. 京都大学プレスリリース. 2023-05-10.Gender inequality across the world has been associated with a higher risk to mental health problems and lower academic achievement in women compared to men. We also know that the brain is shaped by nurturing and adverse socio-environmental experiences. Therefore, unequal exposure to harsher conditions for women compared to men in gender-unequal countries might be reflected in differences in their brain structure, and this could be the neural mechanism partly explaining women’s worse outcomes in gender-unequal countries. We examined this through a random-effects meta-analysis on cortical thickness and surface area differences between adult healthy men and women, including a meta-regression in which country-level gender inequality acted as an explanatory variable for the observed differences. A total of 139 samples from 29 different countries, totaling 7, 876 MRI scans, were included. Thickness of the right hemisphere, and particularly the right caudal anterior cingulate, right medial orbitofrontal, and left lateral occipital cortex, presented no differences or even thicker regional cortices in women compared to men in gender-equal countries, reversing to thinner cortices in countries with greater gender inequality. These results point to the potentially hazardous effect of gender inequality on women’s brains and provide initial evidence for neuroscience-informed policies for gender equality

    Design and implementation of the AMIGA embedded system for data acquisition

    Get PDF
    The Auger Muon Infill Ground Array (AMIGA) is part of the AugerPrime upgrade of the Pierre Auger Observatory. It consists of particle counters buried 2.3 m underground next to the water-Cherenkov stations that form the 23.5 km2^2 large infilled array. The reduced distance between detectors in this denser area allows the lowering of the energy threshold for primary cosmic ray reconstruction down to about 1017^{17} eV. At the depth of 2.3 m the electromagnetic component of cosmic ray showers is almost entirely absorbed so that the buried scintillators provide an independent and direct measurement of the air showers muon content. This work describes the design and implementation of the AMIGA embedded system, which provides centralized control, data acquisition and environment monitoring to its detectors. The presented system was firstly tested in the engineering array phase ended in 2017, and lately selected as the final design to be installed in all new detectors of the production phase. The system was proven to be robust and reliable and has worked in a stable manner since its first deployment.Comment: Accepted for publication at JINST. Published version, 34 pages, 15 figures, 4 table

    Design and implementation of the AMIGA embedded system for data acquisition

    Get PDF

    Immunoglobulin, glucocorticoid, or combination therapy for multisystem inflammatory syndrome in children: a propensity-weighted cohort study

    Get PDF
    Background: Multisystem inflammatory syndrome in children (MIS-C), a hyperinflammatory condition associated with SARS-CoV-2 infection, has emerged as a serious illness in children worldwide. Immunoglobulin or glucocorticoids, or both, are currently recommended treatments. Methods: The Best Available Treatment Study evaluated immunomodulatory treatments for MIS-C in an international observational cohort. Analysis of the first 614 patients was previously reported. In this propensity-weighted cohort study, clinical and outcome data from children with suspected or proven MIS-C were collected onto a web-based Research Electronic Data Capture database. After excluding neonates and incomplete or duplicate records, inverse probability weighting was used to compare primary treatments with intravenous immunoglobulin, intravenous immunoglobulin plus glucocorticoids, or glucocorticoids alone, using intravenous immunoglobulin as the reference treatment. Primary outcomes were a composite of inotropic or ventilator support from the second day after treatment initiation, or death, and time to improvement on an ordinal clinical severity scale. Secondary outcomes included treatment escalation, clinical deterioration, fever, and coronary artery aneurysm occurrence and resolution. This study is registered with the ISRCTN registry, ISRCTN69546370. Findings: We enrolled 2101 children (aged 0 months to 19 years) with clinically diagnosed MIS-C from 39 countries between June 14, 2020, and April 25, 2022, and, following exclusions, 2009 patients were included for analysis (median age 8·0 years [IQR 4·2–11·4], 1191 [59·3%] male and 818 [40·7%] female, and 825 [41·1%] White). 680 (33·8%) patients received primary treatment with intravenous immunoglobulin, 698 (34·7%) with intravenous immunoglobulin plus glucocorticoids, 487 (24·2%) with glucocorticoids alone; 59 (2·9%) patients received other combinations, including biologicals, and 85 (4·2%) patients received no immunomodulators. There were no significant differences between treatments for primary outcomes for the 1586 patients with complete baseline and outcome data that were considered for primary analysis. Adjusted odds ratios for ventilation, inotropic support, or death were 1·09 (95% CI 0·75–1·58; corrected p value=1·00) for intravenous immunoglobulin plus glucocorticoids and 0·93 (0·58–1·47; corrected p value=1·00) for glucocorticoids alone, versus intravenous immunoglobulin alone. Adjusted average hazard ratios for time to improvement were 1·04 (95% CI 0·91–1·20; corrected p value=1·00) for intravenous immunoglobulin plus glucocorticoids, and 0·84 (0·70–1·00; corrected p value=0·22) for glucocorticoids alone, versus intravenous immunoglobulin alone. Treatment escalation was less frequent for intravenous immunoglobulin plus glucocorticoids (OR 0·15 [95% CI 0·11–0·20]; p<0·0001) and glucocorticoids alone (0·68 [0·50–0·93]; p=0·014) versus intravenous immunoglobulin alone. Persistent fever (from day 2 onward) was less common with intravenous immunoglobulin plus glucocorticoids compared with either intravenous immunoglobulin alone (OR 0·50 [95% CI 0·38–0·67]; p<0·0001) or glucocorticoids alone (0·63 [0·45–0·88]; p=0·0058). Coronary artery aneurysm occurrence and resolution did not differ significantly between treatment groups. Interpretation: Recovery rates, including occurrence and resolution of coronary artery aneurysms, were similar for primary treatment with intravenous immunoglobulin when compared to glucocorticoids or intravenous immunoglobulin plus glucocorticoids. Initial treatment with glucocorticoids appears to be a safe alternative to immunoglobulin or combined therapy, and might be advantageous in view of the cost and limited availability of intravenous immunoglobulin in many countries. Funding: Imperial College London, the European Union's Horizon 2020, Wellcome Trust, the Medical Research Foundation, UK National Institute for Health and Care Research, and National Institutes of Health

    Presence of antibody-dependent cellular cytotoxicity (ADCC) against SARS-CoV-2 in COVID-19 plasma

    Get PDF
    Background Neutralizing-antibody (nAb) is the major focus of most ongoing COVID-19 vaccine trials. However, nAb response against SARS-CoV-2, when present, decays rapidly. Given the myriad roles of antibodies in immune responses, it is possible that antibodies could also mediate protection against SARS-CoV-2 via effector mechanisms such as antibody-dependent cellular cytotoxicity (ADCC), which we sought to explore here. Methods Plasma of 3 uninfected controls and 20 subjects exposed to, or recovering from, SARS CoV-2 infection were collected from U.S. and sub-Saharan Africa. Immunofluorescence assay was used to detect the presence of SARS-CoV-2 specific IgG antibodies in the plasma samples. SARS-CoV-2 specific neutralizing capability of these plasmas was assessed with SARS-CoV-2 spike pseudotyped virus. ADCC activity was assessed with a calcein release assay. Results SARS-CoV-2 specific IgG antibodies were detected in all COVID-19 subjects studied. All but three COVID-19 subjects contained nAb at high potency (\u3e80% neutralization). Plasma from 19/20 of COVID-19 subjects also demonstrated strong ADCC activity against SARS CoV-2 spike glycoprotein, including two individuals without nAb against SARS-CoV-2. Conclusion Both neutralizing and non-neutralizing COVID-19 plasmas can mediate ADCC. Our findings argue that evaluation of potential vaccines against SARS-CoV-2 should include investigation of the magnitude and durability of ADCC, in addition to nAb

    Presence of antibody-dependent cellular cytotoxicity (ADCC) against SARS-CoV-2 in COVID-19 plasma.

    Get PDF
    BackgroundNeutralizing-antibody (nAb) is the major focus of most ongoing COVID-19 vaccine trials. However, nAb response against SARS-CoV-2, when present, decays rapidly. Given the myriad roles of antibodies in immune responses, it is possible that antibodies could also mediate protection against SARS-CoV-2 via effector mechanisms such as antibody-dependent cellular cytotoxicity (ADCC), which we sought to explore here.MethodsPlasma of 3 uninfected controls and 20 subjects exposed to, or recovering from, SARS-CoV-2 infection were collected from U.S. and sub-Saharan Africa. Immunofluorescence assay was used to detect the presence of SARS-CoV-2 specific IgG antibodies in the plasma samples. SARS-CoV-2 specific neutralizing capability of these plasmas was assessed with SARS-CoV-2 spike pseudotyped virus. ADCC activity was assessed with a calcein release assay.ResultsSARS-CoV-2 specific IgG antibodies were detected in all COVID-19 subjects studied. All but three COVID-19 subjects contained nAb at high potency (>80% neutralization). Plasma from 19/20 of COVID-19 subjects also demonstrated strong ADCC activity against SARS-CoV-2 spike glycoprotein, including two individuals without nAb against SARS-CoV-2.ConclusionBoth neutralizing and non-neutralizing COVID-19 plasmas can mediate ADCC. Our findings argue that evaluation of potential vaccines against SARS-CoV-2 should include investigation of the magnitude and durability of ADCC, in addition to nAb

    Autoantibodies against type I IFNs in patients with critical influenza pneumonia

    No full text
    Autoantibodies neutralizing type I interferons (IFNs) can underlie critical COVID-19 pneumonia and yellow fever vaccine disease. We report here on 13 patients harboring autoantibodies neutralizing IFN-α2 alone (five patients) or with IFN-ω (eight patients) from a cohort of 279 patients (4.7%) aged 6–73 yr with critical influenza pneumonia. Nine and four patients had antibodies neutralizing high and low concentrations, respectively, of IFN-α2, and six and two patients had antibodies neutralizing high and low concentrations, respectively, of IFN-ω. The patients’ autoantibodies increased influenza A virus replication in both A549 cells and reconstituted human airway epithelia. The prevalence of these antibodies was significantly higher than that in the general population for patients 70 yr of age (3.1 vs. 4.4%, P = 0.68). The risk of critical influenza was highest in patients with antibodies neutralizing high concentrations of both IFN-α2 and IFN-ω (OR = 11.7, P = 1.3 × 10−5), especially those <70 yr old (OR = 139.9, P = 3.1 × 10−10). We also identified 10 patients in additional influenza patient cohorts. Autoantibodies neutralizing type I IFNs account for ∼5% of cases of life-threatening influenza pneumonia in patients <70 yr old

    Design and implementation of the AMIGA embedded system for data acquisition

    Get PDF
    The Auger Muon Infill Ground Array (AMIGA) is part of the AugerPrime upgrade of the Pierre Auger Observatory. It consists of particle counters buried 2.3 m underground next to the water-Cherenkov stations that form the 23.5 km2 large infilled array. The reduced distance between detectors in this denser area allows the lowering of the energy threshold for primary cosmic ray reconstruction down to about 1017 eV. At the depth of 2.3 m the electromagnetic component of cosmic ray showers is almost entirely absorbed so that the buried scintillators provide an independent and direct measurement of the air showers muon content. This work describes the design and implementation of the AMIGA embedded system, which provides centralized control, data acquisition and environment monitoring to its detectors. The presented system was firstly tested in the engineering array phase ended in 2017, and lately selected as the final design to be installed in all new detectors of the production phase. The system was proven to be robust and reliable and has worked in a stable manner since its first deployment
    corecore