3,090 research outputs found

    A Cholinergic Synaptically Triggered Event Participates in the Generation of Persistent Activity Necessary for Eye Fixation

    Get PDF
    An exciting topic regarding integrative properties of the nervous system is how transient motor commands or brief sensory stimuli are able to evoke persistent neuronal changes, mainly as a sustained, tonic action potential firing. A persisting firing seems to be necessary for postural maintenance after a previous movement. We have studied in vitro and in vivo the generation of the persistent neuronal activity responsible for eye fixation after spontaneous eye movements. Rat sagittal brainstem slices were used for the intracellular recording of prepositus hypoglossi (PH) neurons and their synaptic activation from nearby paramedian pontine reticular formation (PPRF) neurons. Single electrical pulses applied to the PPRF showed a monosynaptic glutamatergic projection on PH neurons, acting on AMPA-kainate receptors. Train stimulation of the PPRF area evoked a sustained depolarization of PH neurons exceeding (by hundreds of milliseconds) stimulus duration. Both duration and amplitude of this sustained depolarization were linearly related to train frequency. The train-evoked sustained depolarization was the result of interaction between glutamatergic excitatory burst neurons and cholinergic mesopontine reticular fibers projecting onto PH neurons, because it was prevented by slice superfusion with cholinergic antagonists and mimicked by cholinergic agonists. As expected, microinjections of cholinergic antagonists in the PH nucleus of alert behaving cats evoked a gaze-holding deficit consisting of a re-centering drift of the eye after each saccade. These findings suggest that a slow, cholinergic, synaptically triggered event participates in the generation of persistent activity characteristic of PH neurons carrying eye position signals

    Mitochondria and the NLRP3 Inflammasome in Alcoholic and Nonalcoholic Steatohepatitis

    Full text link
    Alcoholic (ASH) and nonalcoholic steatohepatitis (NASH) are advanced stages of fatty liver disease and two of the most prevalent forms of chronic liver disease. ASH and NASH are associated with significant risk of further progression to cirrhosis and hepatocellular carcinoma (HCC), the most common type of liver cancer, and a major cause of cancer-related mortality. Despite extensive research and progress in the last decades to elucidate the mechanisms of the development of ASH and NASH, the pathogenesis of both diseases is still poorly understood. Mitochondrial damage and activation of inflammasome complexes have a role in inducing and sustaining liver damage. Mitochondrial dysfunction produces inflammatory factors that activate the inflammasome complexes. NLRP3 inflammasome (nucleotide-binding oligomerization domain-like receptor protein 3) is a multiprotein complex that activates caspase 1 and the release of pro-inflammatory cytokines, including interleukin-1? (IL-1?) and interleukin-18 (IL-18), and contributes to inflammatory pyroptotic cell death. The present review, which is part of the issue "Mitochondria in Liver Pathobiology", provides an overview of the role of mitochondrial dysfunction and NLRP3 activation in ASH and NASH

    Coherent imager module with a large field of view for synthetic aperture interferometry applications

    Get PDF
    Optical areal profilometry of large precision-engineered surfaces require high-resolution measurements over large fields of view. Synthetic Aperture Interferometry (SAI) offers an alternative to the conventional approach of stitching small fields of view (FOV) obtained with Coherent Scanning Interferometry (CSI) using high-NA objectives. In SAI, lowresolution digital holograms are recorded for different illumination and observation directions and they are added coherently to produce a high-resolution reconstruction over a large FOV. This paper describes the design, fabrication and characterization of a large FOV, compact and low-cost coherent imager (CI) as a building block of a coherent sensor array for a SAI system. The CI consists of a CMOS photodetector array with 1.12 µm pixel pitch, a square entrance pupil and a highly divergent reference beam that emerges from a pinhole milled with a focused ion beam on the cylindrical cladding at the tip of an optical fibre. In order to accurately reconstruct the digital holograms, the wavefront of the reference beam is estimated by localizing the reference source relative to the photodetector array. This is done using an optimization approach that simultaneously reconstructs plane waves that reach the aperture from 121 different illumination directions and guarantees a phase root-mean-squared (RMS) error of less than a fifth of the wavelength across the CI entrance pupil at a boundary of the FOV. The CI performance is demonstrated with a holographic reconstruction of a 0.110 m wide object placed at a distance of 0.085 m, i.e. a FOV = ±0.57 rad, the highest reported to date with a holographic camera.</div

    High Sensitivity C Reactive Protein in Patients with Rheumatoid Arthritis Treated with Antibodies against IL-6 or Jak Inhibitors: A Clinical and Ultrasonographic Study

    Full text link
    Background: We examined whether high-sensitivity CRP (hsCRP) reflected the inflammatory disease status evaluated by clinical and ultrasound (US) parameters in RA patients receiving IL-6 receptor antibodies (anti-IL-6R) or JAK inhibitors (JAKi). Methods: We conducted a cross-sectional study of patients with established RA receiving anti-IL-6R (tocilizumab, sarilumab) or JAKi (tofacitinib, baricitinib). Serum hsCRP and US synovitis in both hands were measured. Associations between hsCRP and clinical inflammatory activity were evaluated using composite activity indices. The association between hsCRP and US synovitis was analyzed. Results: 63 (92% female) patients (42 anti- IL-6R and 21 JAKi) were included, and the median disease duration was 14.4 (0.2–37.5) years. Most patients were in remission or had low levels of disease. Overall hsCRP values were very low, and significantly lower in anti-IL-6R patients (median 0.04 mg/dL vs. 0.16 mg/dL). Anti-IL-6R (82.4%) patients and 48% of JAKi patients had very low hsCRP levels (≤0.1 mg/dL) (p = 0.002). In the anti-IL-6R group, hsCRP did not correlate with the composite activity index or US synovitis. In the JAKi group, hsCRP moderately correlated with US parameters (r = 0.5) but not clinical disease activity, and hsCRP levels were higher in patients with US synovitis (0.02 vs. 0.42 mg/dL) (p = 0.001). Conclusion: In anti-IL-6R RA-treated patients, hsCRP does not reflect the inflammatory disease state, but in those treated with JAKi, hsCRP was associated with US synovitis

    Impact of Liver Inflammation on Bile Acid Side Chain Shortening and Amidation

    Get PDF
    Bile acid (BA) synthesis from cholesterol by hepatocytes is inhibited by inflammatory cytokines. Whether liver inflammation also affects BA side chain shortening and conjugation was investigated. In human liver cell lines (IHH, HepG2, and HepaRG), agonists of nuclear receptors including the farnesoid X receptor (FXR), liver X receptor (LXR), and peroxisome proliferator-activated receptors (PPARs) did not affect the expression of BA-related peroxisomal enzymes. In contrast, hepatocyte nuclear factor 4? (HNF4?) inhibition down-regulated acyl-CoA oxidase 2 (ACOX2). ACOX2 was repressed by fibroblast growth factor 19 (FGF19), which was prevented by extracellular signal-regulated kinase (ERK) pathway inhibition. These changes were paralleled by altered BA synthesis (HPLC-MS/MS). Cytokines able to down-regulate cholesterol-7?-hydroxylase (CYP7A1) had little effect on peroxisomal enzymes involved in BA synthesis except for ACOX2 and bile acid-CoA:amino acid N-acyltransferase (BAAT), which were down-regulated, mainly by oncostatin M (OSM). This effect was prevented by Janus kinase (JAK) inhibition, which restored BA side chain shortening and conjugation. The binding of OSM to the extracellular matrix accounted for a persistent effect after culture medium replacement. In silico analysis of four databases (n = 201) and a validation cohort (n = 90) revealed an inverse relationship between liver inflammation and ACOX2/BAAT expression which was associated with changes in HNF4? levels. In conclusion, BA side chain shortening and conjugation are inhibited by inflammatory effectors. However, other mechanisms involved in BA homeostasis counterbalance any significant impact on the serum BA profile

    Sphingosine 1-phosphate receptor 4 promotes nonalcoholic steatohepatitis by activating NLRP3 inflammasome

    Get PDF
    BACKGROUND & AIMS: Sphingosine 1-phosphate receptors (S1PRs) are a group of G-protein-coupled receptors that confer a broad range of functional effects in chronic inflammatory and metabolic diseases. S1PRs also may mediate the development of nonalcoholic steatohepatitis (NASH), but the specific subtypes involved and the mechanism of action are unclear. METHODS: We investigated which type of S1PR isoforms is activated in various murine models of NASH. The mechanism of action of S1PR4 was examined in hepatic macrophages isolated from high-fat, high-cholesterol diet (HFHCD)-fed mice. We developed a selective S1PR4 functional antagonist by screening the fingolimod (2-amino-2-[2-(4- n-octylphenyl)ethyl]-1,3-propanediol hydrochloride)-like sphingolipid-focused library. RESULTS: The livers of various mouse models of NASH as well as hepatic macrophages showed high expression of S1pr4. Moreover, in a cohort of NASH patients, expression of S1PR4 was 6-fold higher than those of healthy controls. S1pr4(++/-) mice were protected from HFHCD-induced NASH and hepatic fibrosis without changes in steatosis. S1pr4 depletion in hepatic macrophages inhibited lipopolysaccharide-mediated Ca++ release and deactivated the Nod-like receptor pyrin domaincontainning protein 3 (NLRP3) inflammasome. S1P increased the expression of S1pr4 in hepatic macrophages and activated NLRP3 inflammasome through inositol trisphosphate/inositol trisphosphate-receptor-dependent [Ca++] signaling. To further clarify the biological function of S1PR4, we developed SLB736, a novel selective functional antagonist of SIPR4. Similar to S1pr4(+/-) mice, administration of SLB736 to HFHCD-fed mice prevented the development of NASH and hepatic fibrosis, but not steatosis, by deactivating the NLRP3 inflammasome. CONCLUSIONS: S1PR4 may be a new therapeutic target for NASH that mediates the activation of NLRP3 inflammasome in hepatic macrophages

    Role of mitochondrial raft-like microdomains in the regulation of cell apoptosis

    Get PDF
    Lipid rafts are envisaged as lateral assemblies of specific lipids and proteins that dissociate and associate rapidly and form functional clusters in cell membranes. These structural platforms are not confined to the plasma membrane; indeed lipid microdomains are similarly formed at subcellular organelles, which include endoplasmic reticulum, Golgi and mitochondria, named raft-like microdomains. In addition, some components of raft-like microdomains are present within ER-mitochondria associated membranes. This review is focused on the role of mitochondrial raft-like microdomains in the regulation of cell apoptosis, since these microdomains may represent preferential sites where key reactions take place, regulating mitochondria hyperpolarization, fission-associated changes, megapore formation and release of apoptogenic factors. These structural platforms appear to modulate cytoplasmic pathways switching cell fate towards cell survival or death. Main insights on this issue derive from some pathological conditions in which alterations of microdomains structure or function can lead to severe alterations of cell activity and life span. In the light of the role played by raft-like microdomains to integrate apoptotic signals and in regulating mitochondrial dynamics, it is conceivable that these membrane structures may play a role in the mitochondrial alterations observed in some of the most common human neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Huntington's chorea and prion-related diseases. These findings introduce an additional task for identifying new molecular target(s) of pharmacological agents in these pathologies

    Roadmap to DILI research in Europe. A proposal from COST action ProEuroDILINet

    Get PDF
    \ua9 2024 The AuthorsIn the current article the aims for a constructive way forward in Drug-Induced Liver Injury (DILI) are to highlight the most important priorities in research and clinical science, therefore supporting a more informed, focused, and better funded future for European DILI research. This Roadmap aims to identify key challenges, define a shared vision across all stakeholders for the opportunities to overcome these challenges and propose a high-quality research program to achieve progress on the prediction, prevention, diagnosis and management of this condition and impact on healthcare practice in the field of DILI. This will involve 1. Creation of a database encompassing optimised case report form for prospectively identified DILI cases with well-characterised controls with competing diagnoses, biological samples, and imaging data; 2. Establishing of preclinical models to improve the assessment and prediction of hepatotoxicity in humans to guide future drug safety testing; 3. Emphasis on implementation science and 4. Enhanced collaboration between drug-developers, clinicians and regulatory scientists. This proposed operational framework will advance DILI research and may bring together basic, applied, translational and clinical research in DILI
    corecore