825 research outputs found
Quantum computation with cold bosonic atoms in an optical lattice
We analyse an implementation of a quantum computer using bosonic atoms in an
optical lattice. We show that, even though the number of atoms per site and the
tunneling rate between neighbouring sites is unknown, one may perform a
universal set of gates by means of adiabatic passage
Hall response of interacting bosonic atoms in strong gauge fields: from condensed to FQH states
Interacting bosonic atoms under strong gauge fields undergo a series of phase
transitions that take the cloud from a simple Bose-Einstein condensate all the
way to a family of fractional-quantum-Hall-type states [M. Popp, B. Paredes,
and J. I. Cirac, Phys. Rev. A 70, 053612 (2004)]. In this work we demonstrate
that the Hall response of the atoms can be used to locate the phase transitions
and characterize the ground state of the many-body state. Moreover, the same
response function reveals within some regions of the parameter space, the
structure of the spectrum and the allowed transitions to excited states. We
verify numerically these ideas using exact diagonalization for a small number
of atoms, and provide an experimental protocol to implement the gauge fields
and probe the linear response using a periodically driven optical lattice.
Finally, we discuss our theoretical results in relation to recent experiments
with condensates in artificial magnetic fields [ L. J. LeBlanc, K.
Jimenez-Garcia, R. A. Williams, M. C. Beeler, A. R. Perry, W. D. Phillips, and
I. B. Spielman, Proc. Natl. Acad. Sci. USA 109, 10811 (2012)] and we analyze
the role played by vortex states in the Hall response.Comment: 10 pages, 7 figure
Deep Strong Coupling Regime of the Jaynes-Cummings model
We study the quantum dynamics of a two-level system interacting with a
quantized harmonic oscillator in the deep strong coupling regime (DSC) of the
Jaynes-Cummings model, that is, when the coupling strength g is comparable or
larger than the oscillator frequency w (g/w > 1). In this case, the
rotating-wave approximation cannot be applied or treated perturbatively in
general. We propose an intuitive and predictive physical frame to describe the
DSC regime where photon number wavepackets bounce back and forth along parity
chains of the Hilbert space, while producing collapse and revivals of the
initial population. We exemplify our physical frame with numerical and
analytical considerations in the qubit population, photon statistics, and
Wigner phase space.Comment: Published version, note change of title: DSC regime of the JC mode
Switchable ultrastrong coupling in circuit QED
Superconducting quantum circuits possess the ingredients for quantum
information processing and for developing on-chip microwave quantum optics.
From the initial manipulation of few-level superconducting systems (qubits)
to their strong coupling to microwave resonators, the time has come to consider
the generation and characterization of propagating quantum microwaves. In this
paper, we design a key ingredient that will prove essential in the general
frame: a swtichable coupling between qubit(s) and transmission line(s) that can
work in the ultrastrong coupling regime, where the coupling strength approaches
the qubit transition frequency. We propose several setups where two or more
loops of Josephson junctions are directly connected to a closed (cavity) or
open transmission line. We demonstrate that the circuit induces a coupling that
can be modulated in strength and type. Given recent studies showing the
accessibility to the ultrastrong regime, we expect our ideas to have an
immediate impact in ongoing experiments
Dynamical creation of bosonic Cooper-like pairs
We propose a scheme to create a metastable state of paired bosonic atoms in
an optical lattice. The most salient features of this state are that the
wavefunction of each pair is a Bell state and that the pair size spans half the
lattice, similar to fermionic Cooper pairs. This mesoscopic state can be
created with a dynamical process that involves crossing a quantum phase
transition and which is supported by the symmetries of the physical system. We
characterize the final state by means of a measurable two-particle correlator
that detects both the presence of the pairs and their size
- …