3,302 research outputs found

    Static circularly symmetric perfect fluid solutions with an exterior BTZ metric

    Full text link
    In this work we study static perfect fluid stars in 2+1 dimensions with an exterior BTZ spacetime. We found the general expression for the metric coefficients as a function of the density and pressure of the fluid. We found the conditions to have regularity at the origin throughout the analysis of a set of linearly independent invariants. We also obtain an exact solution of the Einstein equations, with the corresponding equation of state p=p(ρ)p=p(\rho), which is regular at the origin.Comment: 10 pages, 1 figure, revtex 4. This paper is in honor of Alberto Garcia's sixtieth birthday. Accepted by Gen. Rel. Gra

    Swift heavy ion damage to sodium chloride: synergy between excitation and thermal spikes

    Get PDF
    Systematic data on the effect of irradiation with swift ions (Zn at 735 MeV and Xe at 929 MeV) on NaCl single crystals have been analysed in terms of a synergetic two-spike approach (thermal and excitation spikes). The coupling of the two spikes, simultaneously generated by the irradiation, contributes to the operation of a non-radiative exciton decay model as proposed for purely ionization damage. Using this scheme, we have accounted for the π-emission yield of self-trapped excitons and its temperature dependence under ion-beam irradiation. Moreover, the initial production rates of F-centre growth have also been reasonably simulated for irradiation at low temperatures ( < 100 K), where colour centre annealing and aggregation can be neglected

    Solidly Mounted Resonators with Carbon Nanotube Electrodes for Biosensing Applications

    Get PDF
    The work reported here shows a direct experimental comparison of the sensitivities of AlN solidly mounted resonators (SMR)-based biosensors fabricated with standard metal electrodes and with carbon nanotube electrodes. SMRs resonating at frequencies around 1.75 GHz have been fabricated, some devices using a thin film of multi-wall carbon nanotubes (CNTs) as the top electrode material and some identical devices using a chromium/gold electrode. Protein solutions with different concentrations were loaded on the top of the resonators and their responses to mass-load from physically adsorbed coatings were investigated. Results show that resonators using CNTs as the top electrode material exhibited higher frequency change for a given load due to the higher active surface area of a thin film of interconnecting CNTs compared to that of a metal thin film electrode and hence exhibited greater mass loading sensitivity. It is therefore concluded that the use of CNT electrodes on resonators for their use as gravimetric biosensors is viable and worthwhile

    Investigaciones paleobotánicas en la cuenca central del Duero

    Full text link
    El objetivo del trabajo es dar a conocer el estado actual de conocimientos científicos sobre el pasado del paisaje vegetal (Cuaternario final) en los territorios interiores no montanos de la depresión del Duero. Se recogen todos los yacimientos cuyo estudio ya ha concluido así como los que se encuentran en fase de investigación o prospección. Se precisa el tipo de informador en cada caso (polen, carbones, maderas, otros macrorrestos), el rango cronológico conocido hasta el momento así como el grado o proporción de trabajo realizado en cada yacimiento en relación con las previsiones efectuadas. Se aporta una síntesis-resumen de los principales resultados obtenidos hasta el momento y de los aspectos más concluyentes de los mismos en relación con la elaboración de modelos de evolución del paisaje vegetal posteriores al último máximo glacial en la Meseta norte. A nuestro juicio debe destacarse, como uno de los resultados más relevantes, el conocimiento ya afianzado de que los pinares de meseta han sido el elemento más significativo en amplios sectores del sur y este de la cuenca a lo largo de todo o gran parte del Holoceno, circunstancia que contrasta con todas las propuestas de paisaje pretérito (preantrópico) existentes antes de la realización de las prospecciones paleobotánicas

    Process design for the manufacturing of soft X-ray gratings in single-crystal diamond by high-energy heavy-ion irradiation

    Get PDF
    This paper describes in detail a novel manufacturing process for optical gratings suitable for use in the UV and soft X-ray regimes in a single-crystal diamond substrate based on highly focused swift heavy-ion irradiation. This type of grating is extensively used in light source facilities such as synchrotrons or free electron lasers, with ever-increasing demands in terms of thermal loads, depending on beamline operational parameters and architecture. The process proposed in this paper may be a future alternative to current manufacturing techniques, providing the advantage of being applicable to single-crystal diamond substrates, with their unique properties in terms of heat conductivity and radiation hardness. The paper summarizes the physical principle used for the grating patterns produced by swift heavy-ion irradiation and provides full details for the manufacturing process for a specific grating configuration, inspired in one of the beamlines at the ALBA synchrotron light source, while stressing the most challenging points for a potential implementation. Preliminary proof-of-concept experimental results are presented, showing the practical implementation of the methodology proposed herein

    Elastic (stress-strain) halo associated to ion-induced nano-tracks in lithium niobate: role of crystal anisotropy

    Get PDF
    The elastic strain/stress fields (halo) around a compressed amorphous nano-track (core) caused by a single high-energy ion impact on LiNbO3 are calculated. A method is developed to approximately account for the effects of crystal anisotropy of LiNbO3 (symmetry 3m) on the stress fields for tracks oriented along the crystal axes (X, Y or Z). It only considers the zero-order (axial) harmonic contribution to the displacement field in the perpendicular plane and uses effective Poisson moduli for each particular orientation. The anisotropy is relatively small; however, it accounts for some differential features obtained for irradiations along the crystallographic axes X, Y and Z. In particular, the irradiation-induced disorder (including halo) and the associated surface swelling appear to be higher for irradiations along the X- or Y-axis in comparison with those along the Z-axis. Other irradiation effects can be explained by the model, e.g. fracture patterns or the morphology of pores after chemical etching of tracks. Moreover, it offers interesting predictions on the effect of irradiation on lattice parameter

    Shape Analysis and Computational Fluid Simulations to Assess Feline Left Atrial Function and Thrombogenesis

    Get PDF
    In humans, there is a well-established relationship between atrial fibrillation (AF), blood flow abnormalities and thrombus formation, even if there is no clear consensus on the role of left atrial appendage (LAA) morphologies. Cats can also suffer heart diseases, often leading to an enlargement of the left atrium that promotes stagnant blood flow, activating the clotting process and promoting feline aortic thromboembolism. The majority of pathological feline hearts have echocardiographic evidence of abnormal left ventricular filling, usually assessed with 2D and Doppler echocardiography and standard imaging tools. Actually, veterinary professionals have limited access to advanced computational techniques that would enable a better understanding of feline heart pathologies with improved morphological and haemodynamic descriptors. In this work, we applied state-of-the-art image processing and computational fluid simulations based on micro-computed tomography images acquired in 24 cases, including normal cats and cats with varying severity of cardiomyopathy. The main goal of the study was to identify differences in the LA/LAA morphologies and blood flow patterns in the analysed cohorts with respect to thrombus formation and cardiac pathology. The obtained results show significant differences between normal and pathological feline hearts, as well as in thrombus vs non-thrombus cases and asymptomatic vs symptomatic cases, while it was not possible to discern in congestive heart failure with thrombus and from non-thrombus cases. Additionally, in-silico fluid simulations demonstrated lower LAA blood flow velocities and higher thrombotic risk in the thrombus cases

    Micro and nano-patterning of single-crystal diamond by swift heavy ion irradiation

    Get PDF
    This paper presents experimental data and analysis of the structural damage caused by swift-heavy ion irradiation of single-crystal diamond. The patterned buried structural damage is shown to generate, via swelling, a mirror- pattern on the sample surface, which remains largely damage-free. While extensive results are available for light ion implantations, this effect is reported here for the first time in the heavy ion regime,where a completely different range of input parameters (in terms of ion species, energy, stopping power, etc.) is available for customized irradiation. The chosen ion species are Au and Br, in the energy range 10–40 MeV. The observed patterns, as characterized by profilometry and atomic force microscopy, are reported in a series ofmodel experiments,which show swelling patterns ranging from a few nm to above 200 nm. Moreover, a systematic phenomenological modeling is presented, inwhich surface swelling measurements are correlated to buried crystal damage. A comparison ismade with data for light ion implantations, showing good compatibilitywith the proposedmodels. The modeling presented in thiswork can be useful for the design and realization of micropatterned surfaces in single crystal diamond, allowing generating highly customized structures by combining appropriately chosen irradiation parameters and masks

    Climate drives community-wide divergence within species over a limited spatial scale: evidence from an oceanic island

    Get PDF
    Geographic isolation substantially contributes to species endemism on oceanic islands when speciation involves the colonisation of a new island. However, less is understood about the drivers of speciation within islands. What is lacking is a general understanding of the geographic scale of gene flow limitation within islands, and thus the spatial scale and drivers of geographical speciation within insular contexts. Using a community of beetle species, we show that when dispersal ability and climate tolerance are restricted, microclimatic variation over distances of only a few kilometres can maintain strong geographic isolation extending back several millions of years. Further to this, we demonstrate congruent diversification with gene flow across species, mediated by Quaternary climate oscillations that have facilitated a dynamic of isolation and secondary contact. The unprecedented scale of parallel species responses to a common environmental driver for evolutionary change has profound consequences for understanding past and future species responses to climate variation
    corecore