12,058 research outputs found

    Is NGC 3108 transforming itself from an early to late type galaxy -- an astronomical hermaphrodite?

    Full text link
    A common feature of hierarchical galaxy formation models is the process of "inverse" morphological transformation: a bulge dominated galaxy accretes a gas disk, dramatically reducing the system's bulge-to-disk mass ratio. During their formation, present day galaxies may execute many such cycles across the Hubble diagram. A good candidate for such a "hermaphrodite" galaxy is NGC 3108: a dust-lane early-type galaxy which has a large amount of HI gas distributed in a large scale disk. We present narrow band H_alpha and R-band imaging, and compare the results with the HI distribution. The emission is in two components: a nuclear bar and an extended disk component which coincides with the HI distribution. This suggests that a stellar disk is currently being formed out of the HI gas. The spatial distributions of the H_alpha and HI emission and the HII regions are consistent with a barred spiral structure, extending some 20 kpc in radius. We measure an extinction- corrected SFR of 0.42 Msun/yr. The luminosity function of the HII regions is similar to other spiral galaxies, with a power law index of -2.1, suggesting that the star formation mechanism is similar to other spiral galaxies. We measured the current disk mass and find that it is too massive to have been formed by the current SFR over the last few Gyr. It is likely that the SFR in NGC 3108 was higher in the past. With the current SFR, the disk in NGC 3108 will grow to be ~6.2x10^9 Msun in stellar mass within the next 5.5 Gyr. While this is substantial, the disk will be insignificant compared with the large bulge mass: the final stellar mass disk-to-bulge ratio will be ~0.02. NGC 3108 will fail to transform into anything resembling a spiral without a boost in the SFR and additional supply of gas.Comment: 9 pages, 3 figures, accepted for publication in MNRA

    Antibody response against plasmid-encoded toxin (Pet) and the protein involved in intestinal colonization (Pic) in children with diarrhea produced by enteroaggregative Escherichia coli

    Get PDF
    Enteroaggregative Escherichia eoli (EAEC) is an emerging cause of pediatric and adult travellers diarrhea. the mechanism by which EAEC induce diarrhea is not completely known. Two serine protease autotransporter proteins, named Pet and Pic have been identified in EAEC strains. Pet has enterotoxic and cytotoxic activities, while the role of Pic in pathogenesis may lie on its mucinolytic activity. Little is known about Pet and Pic biological activities in vivo. in this study the antibody responses against these autotransporter proteins in convalescent children is investigated. Fifteen (83%) children showed specific antibodies against Pet or Pic in their sera. IgG and IgM antibodies were the main isotype found. Specific antibodies against Pic, but not against Pet, were detected in sera from age-matched control group. These data show that specific anti-Pet and anti-Pic antibodies are produced during the course of a natural EAEC infection in children. (C) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.Univ São Paulo, Dept Microbiol, Inst Ciencias Biomed, São Paulo, BrazilInst Butantan, Lab Especial Microbiol, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Microbiol Imunol & Parasitol, São Paulo, BrazilUniv São Paulo, Fac Ciencias Farmaceut, Dept Anal Clin & Toxicol, BR-05508900 São Paulo, BrazilCINVESTAV, IPN, Dept Cell Biol, Mexico City 14000, DF, MexicoUniversidade Federal de São Paulo, Dept Microbiol Imunol & Parasitol, São Paulo, BrazilWeb of Scienc

    Matching microscopic and macroscopic responses in glasses

    Get PDF
    We first reproduce on the Janus and Janus II computers a milestone experiment that measures the spin-glass coherence length through the lowering of free-energy barriers induced by the Zeeman effect. Secondly we determine the scaling behavior that allows a quantitative analysis of a new experiment reported in the companion Letter [S. Guchhait and R. Orbach, Phys. Rev. Lett. 118, 157203 (2017)]. The value of the coherence length estimated through the analysis of microscopic correlation functions turns out to be quantitatively consistent with its measurement through macroscopic response functions. Further, non-linear susceptibilities, recently measured in glass-forming liquids, scale as powers of the same microscopic length.Comment: 6 pages, 4 figure

    Nature of the spin-glass phase at experimental length scales

    Full text link
    We present a massive equilibrium simulation of the three-dimensional Ising spin glass at low temperatures. The Janus special-purpose computer has allowed us to equilibrate, using parallel tempering, L=32 lattices down to T=0.64 Tc. We demonstrate the relevance of equilibrium finite-size simulations to understand experimental non-equilibrium spin glasses in the thermodynamical limit by establishing a time-length dictionary. We conclude that non-equilibrium experiments performed on a time scale of one hour can be matched with equilibrium results on L=110 lattices. A detailed investigation of the probability distribution functions of the spin and link overlap, as well as of their correlation functions, shows that Replica Symmetry Breaking is the appropriate theoretical framework for the physically relevant length scales. Besides, we improve over existing methodologies to ensure equilibration in parallel tempering simulations.Comment: 48 pages, 19 postscript figures, 9 tables. Version accepted for publication in the Journal of Statistical Mechanic

    Remote sensing detection of nutrient uptake in vineyards using narrow-band hyperspectral imagery

    Get PDF
    This manuscript delves further into the assessment of narrow-band vegetation indices derived from hyperspectral imagery acquired at 1 m spatial resolution with the Compact Airborne Spectrographic Imager (CASI). Narrow-band indices proposed in this study were assessed as indicators of biochemical and structural parameters in Vitis vinifera L., observing their relationships with foliar variables such as N, P, K, Ca, Fe, Mg and chlorophyll a+b concentration (Ca+b). Hyperspectral indices were assessed to study their capability for vegetation condition monitoring as a function of fertilization treatments applied (basically extracts of Ascophyllum nodosum seaweed and chelates), showing associations with field variables. Narrow-band vegetation indices displayed sensitivity to vineyard growth and condition as a function of seaweed fertilization and other supplementary mineral correctors, such as chelates. This work shows the interest of using new narrow-band hyperspectral remote sensing indices for vineyard monitoring due to their potential to indicate physiological condition.

    Critical Behavior of Three-Dimensional Disordered Potts Models with Many States

    Get PDF
    We study the 3D Disordered Potts Model with p=5 and p=6. Our numerical simulations (that severely slow down for increasing p) detect a very clear spin glass phase transition. We evaluate the critical exponents and the critical value of the temperature, and we use known results at lower pp values to discuss how they evolve for increasing p. We do not find any sign of the presence of a transition to a ferromagnetic regime.Comment: 9 pages and 9 Postscript figures. Final version published in J. Stat. Mec

    The three dimensional Ising spin glass in an external magnetic field: the role of the silent majority

    Full text link
    We perform equilibrium parallel-tempering simulations of the 3D Ising Edwards-Anderson spin glass in a field. A traditional analysis shows no signs of a phase transition. Yet, we encounter dramatic fluctuations in the behaviour of the model: Averages over all the data only describe the behaviour of a small fraction of it. Therefore we develop a new approach to study the equilibrium behaviour of the system, by classifying the measurements as a function of a conditioning variate. We propose a finite-size scaling analysis based on the probability distribution function of the conditioning variate, which may accelerate the convergence to the thermodynamic limit. In this way, we find a non-trivial spectrum of behaviours, where a part of the measurements behaves as the average, while the majority of them shows signs of scale invariance. As a result, we can estimate the temperature interval where the phase transition in a field ought to lie, if it exists. Although this would-be critical regime is unreachable with present resources, the numerical challenge is finally well posed.Comment: 42 pages, 19 figures. Minor changes and added figure (results unchanged

    Critical parameters of the three-dimensional Ising spin glass

    Full text link
    We report a high-precision finite-size scaling study of the critical behavior of the three-dimensional Ising Edwards-Anderson model (the Ising spin glass). We have thermalized lattices up to L=40 using the Janus dedicated computer. Our analysis takes into account leading-order corrections to scaling. We obtain Tc = 1.1019(29) for the critical temperature, \nu = 2.562(42) for the thermal exponent, \eta = -0.3900(36) for the anomalous dimension and \omega = 1.12(10) for the exponent of the leading corrections to scaling. Standard (hyper)scaling relations yield \alpha = -5.69(13), \beta = 0.782(10) and \gamma = 6.13(11). We also compute several universal quantities at Tc.Comment: 9 pages, 5 figure
    corecore