43 research outputs found

    Ohm's Law for Plasma in General Relativity and Cowling's Theorem

    Full text link
    The general-relativistic Ohm's law for a two-component plasma which includes the gravitomagnetic force terms even in the case of quasi-neutrality has been derived. The equations that describe the electromagnetic processes in a plasma surrounding a neutron star are obtained by using the general relativistic form of Maxwell equations in a geometry of slow rotating gravitational object. In addition to the general-relativistic effect first discussed by Khanna \& Camenzind (1996) we predict a mechanism of the generation of azimuthal current under the general relativistic effect of dragging of inertial frames on radial current in a plasma around neutron star. The azimuthal current being proportional to the angular velocity ω\omega of the dragging of inertial frames can give valuable contribution on the evolution of the stellar magnetic field if ω\omega exceeds 2.7×1017(n/σ)s12.7\times 10^{17} (n/\sigma) \textrm{s}^{-1} (nn is the number density of the charged particles, σ\sigma is the conductivity of plasma). Thus in general relativity a rotating neutron star, embedded in plasma, can in principle generate axial-symmetric magnetic fields even in axisymmetry. However, classical Cowling's antidynamo theorem, according to which a stationary axial-symmetric magnetic field can not be sustained against ohmic diffusion, has to be hold in the general-relativistic case for the typical plasma being responsible for the rotating neutron star.Comment: Accepted for publication in Astrophysics & Space Scienc

    Classical and semi-classical energy conditions

    Full text link
    The standard energy conditions of classical general relativity are (mostly) linear in the stress-energy tensor, and have clear physical interpretations in terms of geodesic focussing, but suffer the significant drawback that they are often violated by semi-classical quantum effects. In contrast, it is possible to develop non-standard energy conditions that are intrinsically non-linear in the stress-energy tensor, and which exhibit much better well-controlled behaviour when semi-classical quantum effects are introduced, at the cost of a less direct applicability to geodesic focussing. In this article we will first review the standard energy conditions and their various limitations. (Including the connection to the Hawking--Ellis type I, II, III, and IV classification of stress-energy tensors). We shall then turn to the averaged, nonlinear, and semi-classical energy conditions, and see how much can be done once semi-classical quantum effects are included.Comment: V1: 25 pages. Draft chapter, on which the related chapter of the book "Wormholes, Warp Drives and Energy Conditions" (to be published by Springer), will be based. V2: typos fixed. V3: small typo fixe

    Generic thin-shell gravastars

    Full text link
    We construct generic spherically symmetric thin-shell gravastars by using the cut-and-paste procedure. We take considerable effort to make the analysis as general and unified as practicable; investigating both the internal physics of the transition layer and its interaction with "external forces" arising due to interactions between the transition layer and the bulk spacetime. Furthermore, we discuss both the dynamic and static situations. In particular, we consider "bounded excursion" dynamical configurations, and probe the stability of static configurations. For gravastars there is always a particularly compelling configuration in which the surface energy density is zero, while surface tension is nonzero.Comment: V1: 39 pages, 9 figures; V2: 40 pages, 9 figures. References added, some discussion added, some typos fixed. Identical to published version. arXiv admin note: text overlap with arXiv:1112.205

    Inborn errors of OAS-RNase L in SARS-CoV-2-related multisystem inflammatory syndrome in children

    Get PDF
    Multisystem inflammatory syndrome in children (MIS-C) is a rare and severe condition that follows benign COVID-19. We report autosomal recessive deficiencies of OAS1, OAS2, or RNASEL in five unrelated children with MIS-C. The cytosolic double-stranded RNA (dsRNA)-sensing OAS1 and OAS2 generate 2'-5'-linked oligoadenylates (2-5A) that activate the single-stranded RNA-degrading ribonuclease L (RNase L). Monocytic cell lines and primary myeloid cells with OAS1, OAS2, or RNase L deficiencies produce excessive amounts of inflammatory cytokines upon dsRNA or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) stimulation. Exogenous 2-5A suppresses cytokine production in OAS1-deficient but not RNase L-deficient cells. Cytokine production in RNase L-deficient cells is impaired by MDA5 or RIG-I deficiency and abolished by mitochondrial antiviral-signaling protein (MAVS) deficiency. Recessive OAS-RNase L deficiencies in these patients unleash the production of SARS-CoV-2-triggered, MAVS-mediated inflammatory cytokines by mononuclear phagocytes, thereby underlying MIS-C

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Early mobilisation in critically ill COVID-19 patients: a subanalysis of the ESICM-initiated UNITE-COVID observational study

    Get PDF
    Background Early mobilisation (EM) is an intervention that may improve the outcome of critically ill patients. There is limited data on EM in COVID-19 patients and its use during the first pandemic wave. Methods This is a pre-planned subanalysis of the ESICM UNITE-COVID, an international multicenter observational study involving critically ill COVID-19 patients in the ICU between February 15th and May 15th, 2020. We analysed variables associated with the initiation of EM (within 72 h of ICU admission) and explored the impact of EM on mortality, ICU and hospital length of stay, as well as discharge location. Statistical analyses were done using (generalised) linear mixed-effect models and ANOVAs. Results Mobilisation data from 4190 patients from 280 ICUs in 45 countries were analysed. 1114 (26.6%) of these patients received mobilisation within 72 h after ICU admission; 3076 (73.4%) did not. In our analysis of factors associated with EM, mechanical ventilation at admission (OR 0.29; 95% CI 0.25, 0.35; p = 0.001), higher age (OR 0.99; 95% CI 0.98, 1.00; p ≤ 0.001), pre-existing asthma (OR 0.84; 95% CI 0.73, 0.98; p = 0.028), and pre-existing kidney disease (OR 0.84; 95% CI 0.71, 0.99; p = 0.036) were negatively associated with the initiation of EM. EM was associated with a higher chance of being discharged home (OR 1.31; 95% CI 1.08, 1.58; p = 0.007) but was not associated with length of stay in ICU (adj. difference 0.91 days; 95% CI − 0.47, 1.37, p = 0.34) and hospital (adj. difference 1.4 days; 95% CI − 0.62, 2.35, p = 0.24) or mortality (OR 0.88; 95% CI 0.7, 1.09, p = 0.24) when adjusted for covariates. Conclusions Our findings demonstrate that a quarter of COVID-19 patients received EM. There was no association found between EM in COVID-19 patients' ICU and hospital length of stay or mortality. However, EM in COVID-19 patients was associated with increased odds of being discharged home rather than to a care facility. Trial registration ClinicalTrials.gov: NCT04836065 (retrospectively registered April 8th 2021)

    On the non-ideal behavior of the homogeneous esterification reaction: a kinetic model based on activity coefficients

    No full text
    In this paper, we propose a kinetic model that considers the non-ideal behavior of an homogeneous acid catalyzed esterification of free fatty acids (FFA) and that has been derived regarding the well-known Fischer–Speier esterification mechanism. This kinetic expression differs from those used in other studies because it is based on activity coefficients instead of concentrations. This fact allows the kinetic model to remain free of ad hoc functions or arbitrary parameters and it also allows to include explicitly the catalyst activity as a part of the model. The proposed model has been tested through experimental data derived from the esterification of oleic acid and also through experimental data taken from available literature. The results show that the inclusion of the catalyst activity within the kinetic model makes it possible to satisfactorily describe a couple of phenomena: the fast drop of the FFA’s concentration at the beginning of the reaction and the decrease of the reaction rate in the case when water is initially present or when it is produced along the reaction. © 2015 Akadémiai Kiadó, Budapest, Hungar

    In vitro interference by acetaminophen, aspirin, and metamizole in serum measurements of glucose, urea, and creatinine

    No full text
    Objective: Here we aimed to investigate the in vitro effects of three analgesic-antipyretic drugs frequently used in clinical practice in Mexico - acetaminophen (AAP), aspirin (ASA) and metamizole (MMZ) - on serum measurements of glucose, urea, and creatinine. Design and methods: Each analyte was measured in a base-serum pool spiked with the drugs at subtherapeutic, therapeutic, and toxic doses. Serum glucose and urea were measured using the hexokinase/G-6PDH and urease/GLDH kinetic assays, respectively. Serum creatinine (SCr) was measured with a Jaffe procedure based on the alkaline-picrate reaction and with an enzymatic dry-chemistry system. Measurements were carried out in IL-Monarch and Vitros DT60-II analyzers, respectively. Data were analyzed by the difference-paired interference test and by ANOVA. Results: By the kinetic Jaffe/Monarch procedure, we found positive interference by the drugs on the SCr measurements and by only ASA for urea measurement. For creatinine measurements, the total errors (TEs) were 22-51%, 18-105%, and 15-26% for AAP, ASA, and MMZ respectively, while for urea measurement the TE was 16-21% for ASA. A negative interference by MMZ on SCr (TE = -. 47%), but no-interference for AAP or ASA, were found via the enzymatic/DT60-II system. Conclusions: In vitro positive interference induced by AAP, ASA, and MMZ (via the alkaline-picrate reaction), or negative interference by MMZ (via a dry-chemistry system), on the SCr measurements highlights the importance of investigating all possible sources of variation that may alter the accuracy of the laboratory tests, in order to provide useful results for making medical decisions for optimal patient care. © 2015 The Canadian Society of Clinical Chemists
    corecore