23,052 research outputs found
Fe I line shifts in the optical spectrum of the Sun
New improvements in the measurement of both the optical solar spectrum and
laboratory wavelengths for lines of neutral iron are combined to extract
central wavelength shifts for 1446 lines observed in the Sun. This provides the
largest available database of accurate solar wavelengths useful as a reference
for comparison with other solar-type stars. It is shown how the velocity shifts
correlate with line strength, approaching a constant value, close to zero, for
lines with equivalent widths larger than 200 mA.Comment: Latex file (5 pages), uses l-aa.sty and epsfig.sty (included); 3
Postscript figures, 1 ASCII table, accepted for publication in Astronomy and
Astrophysics Supplement Serie
HD 85567: A Herbig B[e] star or an interacting B[e] binary
Context. HD 85567 is an enigmatic object exhibiting the B[e] phenomenon, i.e.
an infrared excess and forbidden emission lines in the optical. The object's
evolutionary status is uncertain and there are conflicting claims that it is
either a young stellar object or an evolved, interacting binary.
Aims. To elucidate the reason for the B[e] behaviour of HD 85567, we have
observed it with the VLTI and AMBER.
Methods. Our observations were conducted in the K-band with moderate spectral
resolution (R~1500, i.e. 200 km/s). The spectrum of HD 85567 exhibits Br gamma
and CO overtone bandhead emission. The interferometric data obtained consist of
spectrally dispersed visibilities, closure phases and differential phases
across these spectral features and the K-band continuum.
Results. The closure phase observations do not reveal evidence of asymmetry.
The apparent size of HD 85567 in the K-band was determined by fitting the
visibilities with a ring model. The best fitting radius, 0.8 +/- 0.3 AU, is
relatively small making HD 85567 undersized in comparison to the
size-luminosity relationship based on YSOs of low and intermediate luminosity.
This has previously been found to be the case for luminous YSOs, and it has
been proposed that this is due to the presence of an optically thick gaseous
disc. We demonstrate that the differential phase observations over the CO
bandhead emission are indeed consistent with the presence of a compact (~1 AU)
gaseous disc interior to the dust sublimation radius.
Conclusions. The observations reveal no sign of binarity. However, the data
do indicate the presence of a gaseous disc interior to the dust sublimation
radius. We conclude that the data are consistent with the hypothesis that HD
85567 is a YSO with an optically thick gaseous disc within a larger dust disc
that is being photo-evaporated from the outer edge.Comment: Accepted for publication in A &
Spatially resolved H_2 emission from a very low-mass star
Molecular outflows from very low-mass stars (VLMSs) and brown dwarfs have
been studied very little. So far, only a few CO outflows have been observed,
allowing us to map the immediate circumstellar environment. We present the
first spatially resolved H2 emission around IRS54 (YLW52), a ~0.1-0.2 Msun
Class I source. By means of VLT SINFONI K-band observations, we probed the H2
emission down to the first ~50 AU from the source. The molecular emission shows
a complex structure delineating a large outflow cavity and an asymmetric
molecular jet. Thanks to the detection of several H2 transitions, we are able
to estimate average values along the jet-like structure (from source position
to knot D) of Av~28 mag, T~2000-3000 K, and H2 column density N(H2)~1.7x10^17
cm^-2. This allows us to estimate a mass loss rate of ~2x10^-10 Msun/yr for the
warm H2 component . In addition, from the total flux of the Br Gamma line, we
infer an accretion luminosity and mass accretion rate of 0.64 Lsun and ~3x10^-7
Msun/yr, respectively. The outflow structure is similar to those found in
low-mass Class I and CTTS. However, the Lacc/Lbol ratio is very high (~80%),
and the mass accretion rate is about one order of magnitude higher when
compared to objects of roughly the same mass, pointing to the young nature of
the investigated source.Comment: accepted as a Letter in A&
IR diagnostics of embedded jets: velocity resolved observations of the HH34 and HH1 jets
We present VLT-ISAAC medium resolution spectroscopy of the HH34 and HH1 jets.
Our aim is to derive the kinematics and the physical parameters and to study
how they vary with jet velocity. We use several important diagnostic lines such
as [FeII] 1.644um, 1.600um and H2 2.122um. In the inner jet region of HH34 we
find that both the atomic and molecular gas present two components at high and
low velocity. The [FeII] LVC in HH34 is detected up to large distances from the
source (>1000 AU), at variance with TTauri jets. In H2 2.122um, the LVC and HVC
are spatially separated. We detect, for the first time, the fainter red-shifted
counterpart down to the central source. In HH1, we trace the jet down to ~1"
from the VLA1 driving source: the kinematics of this inner region is again
characterised by the presence of two velocity components, one blue-shifted and
one red-shifted with respect to the source LSR velocity. In the inner HH34 jet
region, ne increases with decreasing velocity. Up to ~10" from the driving
source, and along the whole HH1 jet an opposite behaviour is observed instead,
with ne increasing with velocity. In both jets the mass flux is carried mainly
by the high-velocity gas. A comparison between the position velocity diagrams
and derived electron densities with models for MHD jet launching mechanisms has
been performed for HH34. While the kinematical characteristics of the line
emission at the jet base can be, at least qualitatively, reproduced by both
X-winds and disc-wind models, none of these models can explain the extent of
the LVC and the dependence of electron density with velocity that we observe.
It is possible that the LVC in HH34 represents gas not directly ejected in the
jet but instead denser ambient gas entrained by the high velocity collimated
jet.Comment: A&A accepte
Effect of Sunflower and Marine Oils on Ruminal Microbiota, In vitro Fermentation and Digesta Fatty Acid Profile
Funding This work has been funded by Consejería de Educación, Junta de Castilla y León (research project LE007A07). Acknowledgments We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI). Support received from CICYT project AGL2005-04760-C02-02 is gratefully acknowledged.Peer reviewedPublisher PD
Implications of a Sub-Threshold Resonance for Stellar Beryllium Depletion
Abundance measurements of the light elements lithium, beryllium, and boron
are playing an increasingly important role in the study of stellar physics.
Because these elements are easily destroyed in stars at temperatures 2--4
million K, the abundances in the surface convective zone are diagnostics of the
star's internal workings. Standard stellar models cannot explain depletion
patterns observed in low mass stars, and so are not accounting for all the
relevant physical processes. These processes have important implications for
stellar evolution and primordial lithium production in big bang
nucleosynthesis. Because beryllium is destroyed at slightly higher temperatures
than lithium, observations of both light elements can differentiate between the
various proposed depletion mechanisms. Unfortunately, the reaction rate for the
main destruction channel, 9Be(p,alpha)6Li, is uncertain. A level in the
compound nucleus 10B is only 25.7 keV below the reaction's energetic threshold.
The angular momentum and parity of this level are not well known; current
estimates indicate that the resonance entrance channel is either s- or d-wave.
We show that an s-wave resonance can easily increase the reaction rate by an
order of magnitude at temperatures of approximately 4 million K. Observations
of sub-solar mass stars can constrain the strength of the resonance, as can
experimental measurements at lab energies lower than 30 keV.Comment: 9 pages, 1 ps figure, uses AASTeX macros and epsfig.sty. Reference
added, typos corrected. To appear in ApJ, 10 March 199
Recommended from our members
Detection of enteric parasite DNA in household and bed dust samples: potential for infection transmission.
BACKGROUND: Enteric parasites are transmitted in households but few studies have sampled inside households for parasites and none have used sensitive molecular methods. METHODS: We collected bed and living room dust samples from households of children participating in a clinical trial of anthelmintic treatment in rural coastal Ecuador. Dust was examined for presence of DNA specific for 11 enteric parasites (Ascaris lumbricoides, Trichuris trichiura, Ancylostoma duodenale, Necator americanus, Strongyloides stercoralis, Toxocara canis and T. cati, Giardia lamblia, Blastocystis hominis, Cryptosporidium spp., and Entamoeba histolytica) by quantitative PCR (qPCR). RESULTS: Of the 38 households sampled, 37 had positive dust for at least one parasite and up to 8 parasites were detected in single samples. Positivity was greatest for B. hominis (79% of household samples) indicating a high level of environmental fecal contamination. Dust positivity rates for individual pathogens were: S. stercoralis (52%), A. lumbricoides (39%), G. lamblia (39%), Toxocara spp. (42%), hookworm (18%) and T. trichiura (8%). DNA for Cryptosporidium spp. and E. histolytica was not detected. Bed dust was more frequently positive than floor samples for all parasites detected. Positivity for A. lumbricoides DNA in bed (adjusted OR: 10.0, 95% CI: 2.0-50.1) but not floor dust (adjusted OR: 3.6, 95% CI: 0.3-37.9) was significantly associated with active infections in children. CONCLUSIONS: To our knowledge, this is the first use of qPCR on environmental samples to detect a wide range of enteric pathogen DNA. Our results indicate widespread contamination of households with parasite DNA and raise the possibility that beds, under conditions of overcrowding in a humid tropical setting, may be a source of transmission
Non-linear response of single-molecule magnets: field-tuned quantum-to-classical crossovers
Quantum nanomagnets can show a field dependence of the relaxation time very
different from their classical counterparts, due to resonant tunneling via
excited states (near the anisotropy barrier top). The relaxation time then
shows minima at the resonant fields H_{n}=n D at which the levels at both sides
of the barrier become degenerate (D is the anisotropy constant). We showed that
in Mn12, near zero field, this yields a contribution to the nonlinear
susceptibility that makes it qualitatively different from the classical curves
[Phys. Rev. B 72, 224433 (2005)]. Here we extend the experimental study to
finite dc fields showing how the bias can trigger the system to display those
quantum nonlinear responses, near the resonant fields, while recovering an
classical-like behaviour for fields between them. The analysis of the
experiments is done with heuristic expressions derived from simple balance
equations and calculations with a Pauli-type quantum master equation.Comment: 4 pages, 3 figures. Submitted to Phys. Rev. B, brief report
POISSON project - III - Investigating the evolution of the mass accretion rate
As part of the POISSON project (Protostellar Optical-Infrared Spectral Survey
on NTT), we present the results of the analysis of low-resolution NIR spectra
0.9-2.4 um) of two samples of YSOs in Lupus and Serpens (52 and 17 objects),
with masses 0.1-2.0 Msun and ages from 10^5 to a few 10^7 yr. After determining
the accretion parameters of the Lup and Ser targets by analysing their HI
near-IR emission features, we added the results to those from previous regions
(investigated in POISSON with the same methodology). We obtained a final
catalogue (143 objects) of mass accretion rates (Macc) derived in a homogeneous
fashion and analysed how Macc correlates with M* and how it evolves in time. We
derived the accretion luminosity (Lacc) and Macc for Lup and Ser objects from
the Br_gamma line by using relevant empirical relationships from the literature
that connect HI line luminosity and Lacc. To minimise the biases and also for
self-consistency, we re-derived mass and age for each source using the same set
of evolutionary tracks. We observe a correlation MaccM*^2.2, similarly to what
has previously been observed in several star-forming clouds. The time variation
of Macc is roughly consistent with the expected evolution in viscous disks,
with an asymptotic decay that behaves as t^-1.6. However, Macc values are
characterised by a large scatter at similar ages and are on average higher than
the predictions of viscous models. Although part of the scattering may be
related to the employed empirical relationship and to uncertainties on the
single measurements, the general distribution and decay trend of the Macc
points are real. These findings might be indicative of a large variation in the
initial mass of the disks, of fairly different viscous laws among disks, of
varying accretion regimes, and of other mechanisms that add to the dissipation
of the disks, such as photo-evaporation.Comment: 18 pages, 10 figures, accepted by A&
- …