42 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Microbial aspects of high-pressure carbon dioxide pasteurization of foods

    No full text

    Acetic Acid as an Indirect Sink of CO2 for the Synthesis of Polyhydroxyalkanoates (PHA): Comparison with PHA Production Processes Directly Using CO2 as Feedstock

    No full text
    White biotechnology is promising to transform CO2 emissions into a valuable commodity chemical such as the biopolymer polyhydroxyalkanaotes (PHA). Our calculations indicated that the indirect conversion of acetic acid from CO2 into PHA is an interesting alternative for the direct production of PHA from CO2 in terms of CO2 fixation, H2 consumption, substrate cost, safety and process performance. An alternative cultivation method using acetic acid as an indirect sink of CO2 was therefore developed and a proof-of-concept provided for the synthesis of both the homopolymer poly(3-hydroxybutyrate) (PHB) and the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). The aim was to compare key performance parameters with those of existing cultivation methods for direct conversion of CO2 to PHA. Fed-batch cultivations for PHA production were performed using a pH-stat fed-batch feeding strategy in combination with an additional Dissolved Oxygen (DO)-dependent feed. After 118 h of fermentation, 60 g/L cell dry matter (CDM) containing 72% of PHB was obtained, which are the highest result values reported so far. Fed-batch cultivations for PHBV production resulted in 65 g/L CDM and 48 g/L PHBV concentration with a 3HV fraction of 27 mol %. Further research should be oriented towards process optimisation, whole process integration and design, and techno-economic assessment

    Does Ralstonia eutropha, rich in poly‐β hydroxybutyrate (PHB), protect blue mussel larvae against pathogenic vibrios?

    No full text
    The natural amorphous polymer poly-beta-hydroxybutyrate (PHB-A: lyophilized Ralstonia eutropha containing 75% PHB) was used as a biological agent to control bacterial pathogens of blue mussel (Mytilus edulis) larvae. The larvae were supplied with PHB-A at a concentration of 1 or 10 mg/L for 6 or 24 hr, followed by exposure to either the rifampicin-resistant pathogen Vibrio splendidus or Vibrio coralliilyticus at a concentration of 10(5) CFU/ml. Larvae pretreated 6 hr with PHB-A (1 mg/L) survived a Vibrio challenge better relative to 24 hr pretreatment. After 96 hr of pathogen exposure, the survival of PHB-A-treated mussel larvae was 1.41- and 1.76-fold higher than the non-treated larvae when challenged with V. splendidus and V. coralliilyticus, respectively. Growth inhibition of the two pathogens at four concentrations of the monomer beta-HB (1, 5, 25 and 125 mM) was tested in vitro in LB35 medium, buffered at two different pH values (pH 7 and pH 8). The highest concentration of 125 mM significantly inhibited the pathogen growth in comparison to the lower levels. The effect of beta-HB on the production of virulence factors in the tested pathogenic Vibrios revealed a variable pattern of responses
    corecore