102 research outputs found

    Design strategies for positively charged endolysins: Insights into Artilysin development

    Get PDF
    Endolysins are bacteriophage-encoded enzymes that can specifically degrade the peptidoglycan layer of bacterial cell wall, making them an attractive tool for the development of novel antibacterial agents. The use of genetic engineering techniques for the production and modification of endolysins offers the opportunity to customize their properties and activity against specific bacterial targets, paving the way for the development of personalized therapies for bacterial infections. Gram-negative bacteria possess an outer membrane that can hinder the action of recombinantly produced endolysins. However, certain endolysins are capable of crossing the outer membrane by virtue of segments that share properties resembling those of cationic peptides. These regions increase the affinity of the endolysin towards the bacterial surface and assist in the permeabilization of the membrane. In order to improve the bactericidal effectiveness of endolysins, approaches have been implemented to increase their net charge, including the development of Artilysins containing positively charged amino acids at one end. At present, there are no specific guidelines outlining the steps for implementing these modifications. There is an ongoing debate surrounding the optimal location of positive charge, the need for a linker region, and the specific amino acid composition of peptides for modifying endolysins. The aim of this study is to provide clarity on these topics by analyzing and comparing the most effective modifications found in previous literature.The authors are indebted to Agencia Española de Investigación for the granted project (PID2019-107298RB-C21/AEI/10.13039/501100011033 to EGF and AA and PID2019-107298RB-C22/AEI/10.13039/501100011033 to NFM), to Marató de TV3 foundation (grant 201812-30-31-32-33) and to AGAUR for project 2021 SGR 01552. The authors are also indebted to the CERCA Program (Generalitat de Catalunya) and European Social Fund for supporting our research. JVCT is supported with a Margarita Salas grant for the training of young doctoral graduates (722713).info:eu-repo/semantics/publishedVersio

    The future of recombinant host defense peptides

    Get PDF
    The antimicrobial resistance crisis calls for the discovery and production of new antimicrobials. Host defense peptides (HDPs) are small proteins with potent antibacterial and immunomodulatory activities that are attractive for translational applications, with several already under clinical trials. Traditionally, antimicrobial peptides have been produced by chemical synthesis, which is expensive and requires the use of toxic reagents, hindering the large-scale development of HDPs. Alternatively, HDPs can be produced recombinantly to overcome these limitations. Their antimicrobial nature, however, can make them toxic to the hosts of recombinant production. In this review we explore the different strategies that are used to fine-tune their activities, bioengineer them, and optimize the recombinant production of HDPs in various cell factories.info:eu-repo/semantics/publishedVersio

    Editorial: High added-value nanoparticles: Rethinking and recycling cell protein waste

    Get PDF
    info:eu-repo/semantics/publishedVersio

    Design strategies for positively charged endolysins : Insights into Artilysin development

    Get PDF
    Altres ajuts: acords transformatius de la UABEndolysins are bacteriophage-encoded enzymes that can specifically degrade the peptidoglycan layer of bacterial cell wall, making them an attractive tool for the development of novel antibacterial agents. The use of genetic engineering techniques for the production and modification of endolysins offers the opportunity to customize their properties and activity against specific bacterial targets, paving the way for the development of personalized therapies for bacterial infections. Gram-negative bacteria possess an outer membrane that can hinder the action of recombinantly produced endolysins. However, certain endolysins are capable of crossing the outer membrane by virtue of segments that share properties resembling those of cationic peptides. These regions increase the affinity of the endolysin towards the bacterial surface and assist in the permeabilization of the membrane. In order to improve the bactericidal effectiveness of endolysins, approaches have been implemented to increase their net charge, including the development of Artilysins containing positively charged amino acids at one end. At present, there are no specific guidelines outlining the steps for implementing these modifications. There is an ongoing debate surrounding the optimal location of positive charge, the need for a linker region, and the specific amino acid composition of peptides for modifying endolysins. The aim of this study is to provide clarity on these topics by analyzing and comparing the most effective modifications found in previous literature

    Editorial: High added-value nanoparticles: Rethinking and recycling cell protein waste

    Get PDF
    Extracellular vesicles; Biomedicine; NanobiotechnlogyVesículas extracelulares; Biomedicina; NanobiotecnologíaVesícules extracel·lulars; Biomedicina; Nanobiotecnologi

    The chaperone DnaK controls the fractioning of functional protein between soluble and insoluble cell fractions in inclusion body-forming cells

    Get PDF
    Background: The molecular mechanics of inclusion body formation is still far from being completely understood, specially regarding the occurrence of properly folded, protein species that exhibit natural biological activities. We have here comparatively explored thermally promoted, in vivo protein aggregation and the formation of bacterial inclusion bodies, from both structural and functional sides. Also, the status of the soluble and insoluble protein versions in both aggregation systems have been examined as well as the role of the main molecular chaperones GroEL and DnaK in the conformational quality of the target polypeptide. Results: While thermal denaturation results in the formation of heterogeneous aggregates that are rather stable in composition, protein deposition as inclusion bodies renders homogenous but strongly evolving structures, which are progressively enriched in the main protein species while gaining native-like structure. Although both type of aggregates display common features, inclusion body formation but not thermal-induced aggregation involves deposition of functional polypeptides that confer biological activity to such particles, at expenses of the average conformational quality of the protein population remaining in the soluble cell fraction. In absence of DnaK, however, the activity and conformational nativeness of inclusion body proteins are dramatically impaired while the soluble protein version gains specific activity. Conclusion: The chaperone DnaK controls the fractioning of active protein between soluble and insoluble cell fractions in inclusion body-forming cells but not during thermally-driven protein aggregation. This cell protein, probably through diverse activities, is responsible for the occurrence and enrichment in inclusion bodies of native-like, functional polypeptides, that are much less represented in other kind of protein aggregates

    Engineering protein self-assembling in protein-based nanomedicines for drug delivery and gene therapy

    Get PDF
    Altres ajuts: FISS/PS09-00165Altres ajuts: FISS/PI12-00327Lack of targeting and improper biodistribution are major flaws in current drug-based therapies that prevent reaching high local concentrations of the therapeutic agent. Such weaknesses impose the administration of high drug doses, resulting in undesired side effects, limited efficacy and enhanced production costs. Currently, missing nanosized containers, functionalized for specific cell targeting will be then highly convenient for the controlled delivery of both conventional and innovative drugs. In an attempt to fill this gap, health-focused nanotechnologies have put under screening a growing spectrum of materials as potential components of nanocages, whose properties can be tuned during fabrication. However, most of these materials pose severe biocompatibility concerns. We review in this study how proteins, the most versatile functional macromolecules, can be conveniently exploited and adapted by conventional genetic engineering as efficient building blocks of fully compatible nanoparticles for drug delivery and how selected biological activities can be recruited to mimic viral behavior during infection. Although engineering of protein self-assembling is still excluded from fully rational approaches, the exploitation of protein nano-assemblies occurring in nature and the direct manipulation of protein-protein contacts in bioinspired constructs open intriguing possibilities for further development. These methodologies empower the construction of new and potent vehicles that offer promise as true artificial viruses for efficient and safe nanomedical applications

    Lactiplantibacillus plantarum: a new example of inclusion body producing bacteria

    Get PDF
    Background Lactic Acid Bacteria such as Lactococcus lactis, Latilactobacillus sakei (basonym: Lactobacillus sakei) and Lactiplantibacillus plantarum (basonym: Lactobacillus plantarum) have gained importance as recombinant cell factories. Although it was believed that proteins produced in these lipopolysaccharides (LPS)-free microorganisms do not aggregate, it has been shown that L. lactis produce inclusion bodies (IBs) during the recombinant production process. These protein aggregates contain biologically active protein, which is slowly released, being a biomaterial with a broad range of applications including the obtainment of soluble protein. However, the aggregation phenomenon has not been characterized so far in L. plantarum. Thus, the current study aims to determine the formation of protein aggregates in L. plantarum and evaluate their possible applications. Results To evaluate the formation of IBs in L. plantarum, the catalytic domain of bovine metalloproteinase 9 (MMP-9cat) protein has been used as model protein, being a prone-to-aggregate (PTA) protein. The electron microscopy micrographs showed the presence of electron-dense structures in L. plantarum cytoplasm, which were further purified and analyzed. The ultrastructure of the isolated protein aggregates, which were smooth, round and with an average size of 250–300 nm, proved that L. plantarum also forms IBs under recombinant production processes of PTA proteins. Besides, the protein embedded in these aggregates was fully active and had the potential to be used as a source of soluble protein or as active nanoparticles. The activity determination of the soluble protein solubilized from these IBs using non-denaturing protocols proved that fully active protein could be obtained from these protein aggregates. Conclusions These results proved that L. plantarum forms aggregates under recombinant production conditions. These aggregates showed the same properties as IBs formed in other expression systems such as Escherichia coli or L. lactis. Thus, this places this LPS-free microorganism as an interesting alternative to produce proteins of interest for the biopharmaceutical industry, which are obtained from the IBs in an important number of cases.info:eu-repo/semantics/publishedVersio

    Potential of Oral Nanoparticles Containing Cytokines as Intestinal Mucosal Immunostimulants in Pigs : A Pilot Study

    Get PDF
    Antibiotics are essential compounds to cope with bacterial infections. However, their inadequate and excessive use has triggered the rapid arising of antimicrobial-resistant bacteria. In this scenario, immunostimulants, which are molecules that boost the immune system, open up a new approach to face this problem, enhancing treatment efficacy and preventing infections by immune system response. Cytokines are central effector molecules of the immune system, and their recombinant production and administration in animals could be an interesting immune modulation strategy. The aim of this study was the development of a highly stable nanoparticle of porcine cytokines to achieve the immunostimulation of intestinal mucosa in piglets. The outcomes of the present study prove this approach is able to stimulate swine intestinal cells and macrophages in vitro and tends to modulate inflammatory responses in vivo, although further studies are required to definitively evaluate their potential in animals. Antimicrobial resistance is a global threat that is worryingly rising in the livestock sector. Among the proposed strategies, immunostimulant development appears an interesting approach to increase animal resilience at critical production points. The use of nanoparticles based on cytokine aggregates, called inclusion bodies (IBs), has been demonstrated as a new source of immunostimulants in aquaculture. Aiming to go a step further, the objective of this study was to produce cytokine nanoparticles using a food-grade microorganism and to test their applicability to stimulate intestinal mucosa in swine. Four cytokines (IL-1β, IL-6, IL-8, and TNF-α) involved in inflammatory response were produced recombinantly in Lactococcus lactis in the form of protein nanoparticles (IBs). They were able to stimulate inflammatory responses in a porcine enterocyte cell line (IPEC-J2) and alveolar macrophages, maintaining high stability at low pH and high temperature. In addition, an in vivo assay was conducted involving 20 piglets housed individually as a preliminary exploration of the potential effects of IL-1β nanoparticles in piglet intestinal mucosa after a 7 d oral administration. The treated animals tended to have greater levels of TNF-α in the blood, indicating that the tested dose of nanoparticles tended to generate an inflammatory response in the animals. Whether this response is sufficient to increase animal resilience needs further evaluation
    corecore