263 research outputs found

    Spectroscopic Observations of Convective Patterns in the Atmospheres of Metal-Poor Stars

    Get PDF
    Convective line asymmetries in the optical spectrum of two metal-poor stars, Gmb1830 and HD140283, are compared to those observed for solar metallicity stars. The line bisectors of the most metal-poor star, the subgiant HD140283, show a significantly larger velocity span that the expectations for a solar-metallicity star of the same spectral type and luminosity class. The enhanced line asymmetries are interpreted as the signature of the lower metal content, and therefore opacity, in the convective photospheric patterns. These findings point out the importance of three-dimensional convective velocity fields in the interpretation of the observed line asymmetries in metal-poor stars, and in particular, urge for caution when deriving isotopic ratios from observed line shapes and shifts using one-dimensional model atmospheres. The mean line bisector of the photospheric atomic lines is compared with those measured for the strong Mg I b1 and b2 features. The upper part of the bisectors are similar, and assuming they overlap, the bottom end of the stronger lines, which are formed higher in the atmosphere, goes much further to the red. This is in agreement with the expected decreasing of the convective blue-shifts in upper atmospheric layers, and compatible with the high velocity redshifts observed in the chromosphere, transition region, and corona of late-type stars.Comment: 27 pages, LaTeX; 10 Figures (14 PostScript files); to be published in The Astrophysical Journa

    Steady-state total diffuse reflectance with an exponential decaying source

    Get PDF
    The increasing preclinical and clinical utilization of digital cameras for photographic measurements of tissue conditions motivates the study of reflectance measurements obtained with planar illumination. We examine herein a formula that models the total diffuse reflectance measured from a semi-infinite medium using an exponentially decaying source, assuming continuous plane wave epi-illumination. The model is validated with experimental reflectance measurements from tissue mimicking phantoms. The need for adjusting the blood absorption spectrum due to pigment packaging is discussed along with the potential applications of the proposed formulation.This research PBGA was supported in part by a Marie Curie Intra European Fellowship within the 7th European Community Framework Program. J. R. acknowledges a Marie Curie CIG grant

    The HERMES Solar Atlas and the spectroscopic analysis of the seismic solar analogue KIC3241581

    Get PDF
    Solar-analog stars provide an excellent opportunity to study the Sun's evolution, i.e. the changes with time in stellar structure, activity, or rotation for solar-like stars. The unparalleled photometric data from the NASA space telescope Kepler allows us to study and characterise solar-like stars through asteroseismology. We aim to spectroscopically investigate the fundamental parameter and chromospheric activity of solar analogues and twins, based on observations obtained with the HERMES spectrograph and combine them with asteroseismology. Therefore, we need to build a solar atlas for the spectrograph, to provide accurate calibrations of the spectroscopically determined abundances of solar and late type stars observed with this instrument and thus perform differential spectral comparisons. We acquire high-resolution and high signal-to-noise spectroscopy to construct three solar reference spectra by observing the reflected light of Vesta and Victoria asteroids and Europa (100<S/N<450) with the \Hermes spectrograph. We then observe the Kepler solar analog KIC3241581 (S/N~170). We constructed three solar spectrum atlases from 385 to 900 nm obtained with the Hermes spectrograph from observations of two bright asteroids and Europa. A comparison between our solar spectra atlas to the Kurucz and HARPS solar spectrum shows an excellent agreement. KIC3241581 was found to be a long-periodic binary system. The fundamental parameter for the stellar primary component are Teff=5689+/-11K, logg=4.385+/-0.005, [Fe/H]=+0.22+/-0.01, being in agreement with the published global seismic values confirming its status of solar analogue. KIC 3241581 is a metal rich solar analogue with a solar-like activity level in a binary system of unknown period. The chromospheric activity level is compatible to the solar magnetic activity.Comment: 12 pages, 8 figures, accepted for publication in A&

    Defect Detection in Arc-Welding Processes by Means of the Line-to-Continuum Method and Feature Selection

    Get PDF
    Plasma optical spectroscopy is widely employed in on-line welding diagnostics. The determination of the plasma electron temperature, which is typically selected as the output monitoring parameter, implies the identification of the atomic emission lines. As a consequence, additional processing stages are required with a direct impact on the real time performance of the technique. The line-to-continuum method is a feasible alternative spectroscopic approach and it is particularly interesting in terms of its computational efficiency. However, the monitoring signal highly depends on the chosen emission line. In this paper, a feature selection methodology is proposed to solve the uncertainty regarding the selection of the optimum spectral band, which allows the employment of the line-to-continuum method for on-line welding diagnostics. Field test results have been conducted to demonstrate the feasibility of the solution

    A Consistency Test of Spectroscopic Gravities for Late-Type Stars

    Get PDF
    Chemical analyses of late-type stars are usually carried out following the classical recipe: LTE line formation and homogeneous, plane-parallel, flux-constant, and LTE model atmospheres. We review different results in the literature that have suggested significant inconsistencies in the spectroscopic analyses, pointing out the difficulties in deriving independent estimates of the stellar fundamental parameters and hence,detecting systematic errors. The trigonometric parallaxes measured by the HIPPARCOS mission provide accurate appraisals of the stellar surface gravity for nearby stars, which are used here to check the gravities obtained from the photospheric iron ionization balance. We find an approximate agreement for stars in the metallicity range -1 <= [Fe/H] <= 0, but the comparison shows that the differences between the spectroscopic and trigonometric gravities decrease towards lower metallicities for more metal-deficient dwarfs (-2.5 <= [Fe/H] <= -1.0), which casts a shadow upon the abundance analyses for extreme metal-poor stars that make use of the ionization equilibrium to constrain the gravity. The comparison with the strong-line gravities derived by Edvardsson (1988) and Fuhrmann (1998a) confirms that this method provides systematically larger gravities than the ionization balance. The strong-line gravities get closer to the physical ones for the stars analyzed by Fuhrmann, but they are even further away than the iron ionization gravities for the stars of lower gravities in Edvardsson's sample. The confrontation of the deviations of the iron ionization gravities in metal-poor stars reported here with departures from the excitation balance found in the literature, show that they are likely to be induced by the same physical mechanism(s).Comment: AAS LaTeX v4.0, 35 pages, 10 PostScript files; to appear in The Astrophysical Journa

    Chemical abundance gradients from open clusters in the Milky Way disk: results from the APOGEE survey

    Get PDF
    Metallicity gradients provide strong constraints for understanding the chemical evolution of the Galaxy. We report on radial abundance gradients of Fe, Ni, Ca, Si, and Mg obtained from a sample of 304 red-giant members of 29 disk open clusters, mostly concentrated at galactocentric distances between ~8 - 15 kpc, but including two open clusters in the outer disk. The observations are from the APOGEE survey. The chemical abundances were derived automatically by the ASPCAP pipeline and these are part of the SDSS III Data Release 12. The gradients, obtained from least squares fits to the data, are relatively flat, with slopes ranging from -0.026 to -0.033 dex/kpc for the alpha-elements [O/H], [Ca/H], [Si/H] and [Mg/H] and -0.035 dex/kpc and -0.040 dex/kpc for [Fe/H] and [Ni/H], respectively. Our results are not at odds with the possibility that metallicity ([Fe/H]) gradients are steeper in the inner disk (R_GC ~7 - 12 kpc) and flatter towards the outer disk. The open cluster sample studied spans a significant range in age. When breaking the sample into age bins, there is some indication that the younger open cluster population in our sample (log age < 8.7) has a flatter metallicity gradient when compared with the gradients obtained from older open clusters.Comment: 4 pages, 3 figures, To appear in Astronomische Nachrichten, special issue "Reconstruction the Milky Way's History: Spectroscopic surveys, Asteroseismology and Chemo-dynamical models", Guest Editors C. Chiappini, J. Montalb\'an, and M. Steffen, AN 2016 (in press)

    Sodium and Oxygen Abundances in the Open Cluster NGC 6791 from APOGEE H-Band Spectroscopy

    Get PDF
    The open cluster NGC 6791 is among the oldest, most massive and metal-rich open clusters in the Galaxy. High-resolution HH-band spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) of 11 red giants in NGC 6791 are analyzed for their chemical abundances of iron, oxygen, and sodium. The abundances of these three elements are found to be homogeneous (with abundance dispersions at the level of \sim 0.05 - 0.07 dex) in these cluster red giants, which span much of the red-giant branch (Teff_{\rm eff} \sim 3500K - 4600K), and include two red-clump giants. From the infrared spectra, this cluster is confirmed to be among the most metal-rich clusters in the Galaxy ( = 0.34 ±\pm 0.06), and is found to have a roughly solar value of [O/Fe] and slightly enhanced [Na/Fe]. Non-LTE calculations for the studied Na I lines in the APOGEE spectral region (λ\lambda16373.86\AA\ and λ\lambda16388.85\AA) indicate only small departures from LTE (\leq 0.04 dex) for the parameter range and metallicity of the studied stars. The previously reported double population of cluster members with different Na abundances is not found among the studied sample.Comment: Accepted for publication at ApJ Letter

    Arc-welding spectroscopic monitoring based on feature selection and neural networks

    Get PDF
    A new spectral processing technique designed for application in the on-line detection and classification of arc-welding defects is presented in this paper. A noninvasive fiber sensor embedded within a TIG torch collects the plasma radiation originated during the welding process. The spectral information is then processed in two consecutive stages. A compression algorithm is first applied to the data, allowing real-time analysis. The selected spectral bands are then used to feed a classification algorithm, which will be demonstrated to provide an efficient weld defect detection and classification. The results obtained with the proposed technique are compared to a similar processing scheme presented in previous works, giving rise to an improvement in the performance of the monitoring system

    The Open Cluster Chemical Analysis and Mapping Survey: Local Galactic Metallicity Gradient with APOGEE using SDSS DR10

    Get PDF
    The Open Cluster Chemical Analysis and Mapping (OCCAM) Survey aims to produce a comprehensive, uniform, infrared-based dataset for hundreds of open clusters, and constrain key Galactic dynamical and chemical parameters from this sample. This first contribution from the OCCAM survey presents analysis of 141 members stars in 28 open clusters with high-resolution metallicities derived from a large uniform sample collected as part of the SDSS-III/Apache Point Observatory Galactic Evolution Experiment (APOGEE). This sample includes the first high-resolution metallicity measurements for 22 open clusters. With this largest ever uniformly observed sample of open cluster stars we investigate the Galactic disk gradients of both [M/H] and [alpha/M]. We find basically no gradient across this range in [alpha/M], but [M/H] does show a gradient for R_{GC} < 10 kpc and a significant flattening beyond R_{GC} = 10 kpc. In particular, whereas fitting a single linear trend yields an [M/H] gradient of -0.09 +/- 0.03$ dex/kpc --- similar to previously measure gradients inside 13 kpc --- by independently fitting inside and outside 10 kpc separately we find a significantly steeper gradient near the Sun (7.9 <= R_{GC} <= 10) than previously found (-0.20 +/- 0.08 dex/kpc) and a nearly flat trend beyond 10 kpc (-0.02 +/- 0.09 dex/kpc).Comment: 6 pages, 4 figures, ApJ letters, in pres
    corecore