720 research outputs found
Radiative corrections to low energy neutrino reactions
We show that the radiative corrections to charged current (CC) nuclear
reactions with an electron(positron) in the final state are described by a
universal function. The consistency of our treatment of the radiative
corrections with the procedure used to extract the value of the axial coupling
constant is discussed. To illustrate we apply our results to
(anti)neutrino deuterium disintegration and to fusion in the sun. The
limit of vanishing electron mass is considered, and a simple formula valid for
E_{obs}\gsim 1 MeV is obtained. The size of the nuclear structure-dependent
effects is also discussed. Finally, we consider CC transitions with an
electron(positron) in the initial state and discuss some applications to
electron capture reactions.Comment: 23 pages, 5 figure
Multipath Modeling of Automotive Power Line Communication Channels
In this paper an in-vehicle power line channel mathematical multipath representation is proposed. The selected approach aims at describing the transmission of a signal on a possibly complex power network by means of a finite number of delayed echoes. Model parameters are computed via a welldefined step-by-step procedure from frequency-domain channel characteristics. The feasibility and strength of the method are demonstrated by means of a measurement campaign. Two-port scattering measurements have been carried out on a commercial automobile and the effect of the measurement setup has been considered in the analysis
Effects of site dilution on the magnetic properties of geometrically frustrated antiferromagnets
The effect of site dilution by non magnetic impurities on the susceptibility
of geometrically frustrated antiferromagnets (kagome and pyrochlore lattices)
is discussed in the framework of the Generalized Constant Coupling model, for
both classical and quantum Heisenberg spins. For the classical diluted
pyrochlore lattice, excellent agreement is found when compared with Monte Carlo
data. Results for the quantum case are also presented and discussed.Comment: 5 pages, 3 figure
SELEX RICH Performance and Physics Results
SELEX took data in the 1996/7 Fixed Target Run at Fermilab. The excellent
performance parameters of the SELEX RICH Detector had direct influence on the
quality of the obtained physics results.Comment: Contributed talk at the Fourth Workshop on RICH Detectors, June 5-10,
2002, Pylos, Greece. Accepted for publication in NIM
Bubble fluctuations in inflation
In the context of the open inflationary universe, we calculate the amplitude
of quantum fluctuations which deform the bubble shape. These give rise to
scalar field fluctuations in the open Friedman-Robertson-Walker universe which
is contained inside the bubble. One can transform to a new gauge in which
matter looks perfectly smooth, and then the perturbations behave as tensor
modes (gravitational waves of very long wavelength). For , where
is the density parameter, the microwave temperature anisotropies
produced by these modes are of order . Here, is the expansion rate during inflation, is
the intrinsic radius of the bubble at the time of nucleation, is the
bubble wall tension and labels the different multipoles (). The
gravitational backreaction of the bubble has been ignored. In this
approximation, , and the new effect can be much larger than the
one due to ordinary gravitational waves generated during inflation (unless, of
course, gets too close to one, in which case the new effect
disappears).Comment: 17 pages, 3 figs, LaTeX, epsfig.sty, available at
ftp://ftp.ifae.es/preprint/ft/uabft387.p
On random flights with non-uniformly distributed directions
This paper deals with a new class of random flights defined in the real space characterized
by non-uniform probability distributions on the multidimensional sphere. These
random motions differ from similar models appeared in literature which take
directions according to the uniform law. The family of angular probability
distributions introduced in this paper depends on a parameter which
gives the level of drift of the motion. Furthermore, we assume that the number
of changes of direction performed by the random flight is fixed. The time
lengths between two consecutive changes of orientation have joint probability
distribution given by a Dirichlet density function.
The analysis of is not an easy task, because it
involves the calculation of integrals which are not always solvable. Therefore,
we analyze the random flight obtained as
projection onto the lower spaces of the original random
motion in . Then we get the probability distribution of
Although, in its general framework, the analysis of is very complicated, for some values of , we can provide
some results on the process. Indeed, for , we obtain the characteristic
function of the random flight moving in . Furthermore, by
inverting the characteristic function, we are able to give the analytic form
(up to some constants) of the probability distribution of Comment: 28 pages, 3 figure
Energy Transfer between Throats from a 10d Perspective
Strongly warped regions, also known as throats, are a common feature of the
type IIB string theory landscape. If one of the throats is heated during
cosmological evolution, the energy is subsequently transferred to other throats
or to massless fields in the unwarped bulk of the Calabi-Yau orientifold. This
energy transfer proceeds either by Hawking radiation from the black hole
horizon in the heated throat or, at later times, by the decay of
throat-localized Kaluza-Klein states. In both cases, we calculate in a 10d
setup the energy transfer rate (respectively decay rate) as a function of the
AdS scales of the throats and of their relative distance. Compared to existing
results based on 5d models, we find a significant suppression of the energy
transfer rates if the size of the embedding Calabi-Yau orientifold is much
larger than the AdS radii of the throats. This effect can be partially
compensated by a small distance between the throats. These results are
relevant, e.g., for the analysis of reheating after brane inflation. Our
calculation employs the dual gauge theory picture in which each throat is
described by a strongly coupled 4d gauge theory, the degrees of freedom of
which are localized at a certain position in the compact space.Comment: 25 pages; a comment adde
Scalar field in the Bianchi I: Non commutative classical and Quantum Cosmology
Using the ADM formalism in the minisuperspace, we obtain the commutative and
noncommutative exact classical solutions and exact wave function to the
Wheeler-DeWitt equation with an arbitrary factor ordering, for the anisotropic
Bianchi type I cosmological model, coupled to a scalar field, cosmological term
and barotropic perfect fluid. We introduce noncommutative scale factors,
considering that all minisuperspace variables do not commute, so the
symplectic structure was modified. In the classical regime, it is shown that
the anisotropic parameter and the field , for some
value in the cosmological term and noncommutative
parameter, present a dynamical isotropization up to a critical cosmic time
; after this time, the effects of isotropization in the noncommutative
minisuperspace seems to disappear. In the quantum regimen, the probability
density presents a new structure that corresponds to the value of the
noncommutativity parameter.Comment: 17 pages, 6 figures, Acepted in IJT
Investigating Safety And Preliminary Efficacy Of Afm13 Plus Pembrolizumab In Patients With Relapsed/Refractory Hodgkin Lymphoma After Brentuximab Vedotin Failure
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149522/1/hon134_2629.pd
- …