26 research outputs found
Human-iPSC-Derived Cardiac Stromal Cells Enhance Maturation in 3D Cardiac Microtissues and Reveal Non-cardiomyocyte Contributions to Heart Disease
Cardiomyocytes (CMs) from human induced pluripotent stem cells (hiPSCs) are functionally immature, but this is improved by incorporation into engineered tissues or forced contraction. Here, we showed that tri-cellular combinations of hiPSC-derived CMs, cardiac fibroblasts (CFs), and cardiac endothelial cells also enhance maturation in easily constructed, scaffold-free, three-dimensional microtissues (MTs). hiPSC-CMs in MTs with CFs showed improved sarcomeric structures with T-tubules, enhanced contractility, and mitochondrial respiration and were electrophysiologically more mature than MTs without CFs. Interactions mediating maturation included coupling between hiPSC-CMs and CFs through connexin 43 (CX43) gap junctions and increased intracellular cyclic AMP (cAMP). Scaled production of thousands of hiPSC-MTs was highly reproducible across lines and differentiated cell batches. MTs containing healthy-control hiPSC-CMs but hiPSC-CFs from patients with arrhythmogenic cardiomyopathy strikingly recapitulated features of the disease. Our MT model is thus a simple and versatile platform for modeling multicellular cardiac diseases that will facilitate industry and academic engagement in high-throughput molecular screening
Building The Sugarcane Genome For Biotechnology And Identifying Evolutionary Trends
Background: Sugarcane is the source of sugar in all tropical and subtropical countries and is becoming increasingly important for bio-based fuels. However, its large (10 Gb), polyploid, complex genome has hindered genome based breeding efforts. Here we release the largest and most diverse set of sugarcane genome sequences to date, as part of an on-going initiative to provide a sugarcane genomic information resource, with the ultimate goal of producing a gold standard genome.Results: Three hundred and seventeen chiefly euchromatic BACs were sequenced. A reference set of one thousand four hundred manually-annotated protein-coding genes was generated. A small RNA collection and a RNA-seq library were used to explore expression patterns and the sRNA landscape. In the sucrose and starch metabolism pathway, 16 non-redundant enzyme-encoding genes were identified. One of the sucrose pathway genes, sucrose-6-phosphate phosphohydrolase, is duplicated in sugarcane and sorghum, but not in rice and maize. A diversity analysis of the s6pp duplication region revealed haplotype-structured sequence composition. Examination of hom(e)ologous loci indicate both sequence structural and sRNA landscape variation. A synteny analysis shows that the sugarcane genome has expanded relative to the sorghum genome, largely due to the presence of transposable elements and uncharacterized intergenic and intronic sequences.Conclusion: This release of sugarcane genomic sequences will advance our understanding of sugarcane genetics and contribute to the development of molecular tools for breeding purposes and gene discovery. © 2014 de Setta et al.; licensee BioMed Central Ltd.151European Commission: Agriculture and Rural Development: Sugar http://ec.europa.eu/agriculture/sugar/index_en.htmKellogg, E.A., Evolutionary history of the grasses (2001) Plant Physiol, 125, pp. 1198-1205Grivet, L., Arruda, P., Sugarcane genomics: depicting the complex genome of an important tropical crop (2001) Curr Opin Plant Biol, 5, pp. 122-127Piperidis, G., Piperidis, N., D'Hont, A., Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane (2010) Mol Genet Genomics, 284, pp. 65-73D'Hont, A., Unraveling the genome structure of polyploids using FISH and GISHexamples of sugarcane and banana (2005) Cytogenet Genome Res, 109, pp. 27-33D'Hont, A., Glaszmann, J.C., Sugarcane genome analysis with molecular markers: a first decade of research (2001) Int Soc Sugar Cane Technol Proc XXIV Congr, pp. 556-559Tomkins, J., Yu, Y., Miller-Smith, H., Frisch, D., Woo, S., Wing, R., A bacterial artificial chromosome library for sugarcane (1999) Theor Appl Genet, 99, pp. 419-424Vettore, L., Silva, F.R., Kemper, E.L., Souza, G.M., Silva, A.M., Ferro, M., Henrique-Silva, F., Monteiro-Vitorello, C.B., Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane (2003) Genome Res, 13, pp. 2725-2735Repbase http://www.girinst.org/repbase/Domingues, D.S., Cruz, G.M.Q., Metcalfe, C.J., Nogueira, F.T.S., Vicentini, R., Alves, C.S., Van Sluys, M.-A., Analysis of plant LTR-retrotransposons at the fine-scale family level reveals individual molecular patterns (2012) BMC Genomics, 13, p. 137National Center for Biotechnology Information (NCBI) http://www.ncbi.nlm.nih.gov/Meyer, F., Paarmann, D., D'Souza, M., Olson, R., Glass, E.M., Kubal, M., Paczian, T., Edwards, R.A., The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes (2008) BMC Bioinformatics, 9, p. 386Keeling, P.L., Myers, A.M., Biochemistry and genetics of starch synthesis (2010) Annu Rev Food Sci Technol, 1, pp. 271-303Phytozome v9.1: Home http://www.phytozome.net/Dias, E.S., Carareto, C.M.A., Ancestral polymorphism and recent invasion of transposable elements in Drosophila species (2012) BMC Evol Biol, 12, p. 119Posada, D., Crandall, K., Intraspecific gene genealogies: trees grafting into networks (2001) Trends Ecol Evol, 16, pp. 37-45Swaminathan, K., Alabady, M.S., Varala, K., De Paoli, E., Ho, I., Rokhsar, D.S., Arumuganathan, A.K., Hudson, M.E., Genomic and small RNA sequencing of Miscanthus x giganteus shows the utility of sorghum as a reference genome sequence for Andropogoneae grasses (2010) Genome Biol, 11, pp. R12Zanca, A.S., Vicentini, R., Ortiz-Morea, F.A., Del Bem, L.E., da Silva, M.J., Vincentz, M., Nogueira, F.T., Identification and expression analysis of microRNAs and targets in the biofuel crop sugarcane (2010) BMC Plant Biol, 10, p. 260Piriyapongsa, J., Jordan, I.K., A family of human microRNA genes from miniature inverted-repeat transposable elements (2007) PLoS ONE, 2, pp. e203Barrera-Figueroa, B.E., Gao, L., Wu, Z., Zhou, X., Zhu, J., Jin, H., Liu, R., Zhu, J.-K., High throughput sequencing reveals novel and abiotic stress-regulated microRNAs in the inflorescences of rice (2012) BMC Plant Biol, 12, p. 132Nagaki, K., Tsujimoto, H., Sasakuma, T., A novel repetitive sequence of sugar cane, SCEN family, locating on centromeric regions (1998) Chromosom Res, 6, pp. 295-302Nagaki, K., Neumann, P., Zhang, D., Ouyang, S., Buell, C.R., Cheng, Z., Jiang, J., Structure, divergence, and distribution of the CRR centromeric retrotransposon family in rice (2005) Mol Biol Evol, 22, pp. 845-855Vicentini, R., Del Bem, L.E., Van Sluys, M.-A., Nogueira, F., Vincentz, M., Gene content analysis of sugarcane public ESTs reveals thousands of missing coding-genes and an unexpected pool of grasses conserved ncRNAs (2012) Trop Plant Biol, 5, pp. 199-205Kim, C., Lee, T.-H., Compton, R.O., Robertson, J.S., Pierce, G.J., Paterson, A.H., A genome-wide BAC end-sequence survey of sugarcane elucidates genome composition, and identifies BACs covering much of the euchromatin (2013) Plant Mol Biol, 81, pp. 139-147Paterson, A.H., Bowers, J.E., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach, H., Haberer, G., Carpita, N.C., The Sorghum bicolor genome and the diversification of grasses (2009) Nature, 457, pp. 551-556Chang, Y., Gong, L., Yuan, W., Li, X., Chen, G., Li, X., Zhang, Q., Wu, C., Replication protein A (RPA1a) is required for meiotic and somatic DNA repair but is dispensable for DNA replication and homologous recombination in rice (2009) Plant Physiol, 151, pp. 2162-2173Feschotte, C., Transposable elements and the evolution of regulatory networks (2008) Nat Rev Genet, 9, pp. 397-405Wang, J., Roe, B., Macmil, S., Yu, Q., Murray, J.E., Tang, H., Chen, C., Ming, R., Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes (2010) BMC Genomics, 11, p. 261Garsmeur, O., Charron, C., Bocs, S., Jouffe, V., Samain, S., Couloux, A., Droc, G., D'Hont, A., High homologous gene conservation despite extreme autopolyploid redundancy in sugarcane (2011) New Phytol, 189, pp. 629-642Jannoo, N., Grivet, L., Chantret, N., Garsmeur, O., Glaszmann, J.C., Arruda, P., D'Hont, A., Orthologous comparison in a gene-rich region among grasses reveals stability in the sugarcane polyploid genome (2007) Plant J, 50, pp. 574-585Figueira, T.R.E.S., Okura, V., da Silva, F.R., da Silva, M.J., Kudrna, D., Ammiraju, J.S.S., Talag, J., Arruda, P., A BAC library of the SP80-3280 sugarcane variety (saccharum sp.) and its inferred microsynteny with the sorghum genome (2012) BMC Res Notes, 5, p. 185Schnable, P.S., Ware, D., Fulton, R.S., Stein, J.C., Wei, F., Pasternak, S., Liang, C., Gillam, B., The B73 maize genome: complexity, diversity, and dynamics (2009) Science, 326, pp. 1112-1115Tenaillon, M.I., Hufford, M.B., Gaut, B.S., Ross-Ibarra, J., Genome size and transposable element content as determined by high-throughput sequencing in maize and Zea luxurians (2011) Genome Biol Evol, 3, pp. 219-229Zhang, J., Yu, C., Krishnaswamy, L., Peterson, T., Transposable Elements as Catalysts for Chromosome Rearrangements (2011) Methods Mol Biol, pp. 315-326. , Totowa, NJ: Humana Press, Birchler JAMa, J., Wing, R.A., Bennetzen, J.L., Jackson, S.A., Plant centromere organization: a dynamic structure with conserved functions (2007) Trends Genet, 23, pp. 134-139D'Hont, A., Grivet, L., Feldmann, P., Rao, S., Berding, N., Glaszmann, J.C., Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics (1996) Mol Gen Genet, 250, pp. 405-413Bao, Y., Wendel, J.F., Ge, S., Multiple patterns of rDNA evolution following polyploidy in Oryza (2010) Mol Phylogenet Evol, 55, pp. 136-142Lynch, M., (2007) The Origins of Genome Architecture, , Sunderland, Massachussetts, USA: Sinauer Associates IncThe map-based sequence of the rice genome (2005) Nature, 436, pp. 793-800. , International Rice Genome Sequencing ProjectLiu, B., Xu, C., Zhao, N., Qi, B., Kimatu, J.N., Pang, J., Han, F., Rapid genomic changes in polyploid wheat and related species: implications for genome evolution and genetic improvement (2009) J Genet Genomics, 36, pp. 519-528Lisch, D., How important are transposons for plant evolution? (2012) Nat Rev Genet, 14, pp. 49-61Udall, J.A., Wendel, J.F., Polyploidy and crop improvement (2006) Crop Sci, 46, pp. S3-S14Varshney, R.K., Graner, A., Sorrells, M.E., Genomics-assisted breeding for crop improvement (2005) Trends Plant Sci, 10, pp. 621-630Menossi, M., Silva-Filho, M.C., Vincentz, M., Van-Sluys, M.-A., Souza, G.M., Sugarcane functional genomics: gene discovery for agronomic trait development (2008) Int J Plant Genomics, 2008, p. 458732. , doi:10.1155/2008/458732Palhares, A.C., Rodrigues-Morais, T.B., Van Sluys, M.-A., Domingues, D.S., Maccheroni, W., JordĂŁo, H., Souza, A.P., Vieira, M.L.C., A novel linkage map of sugarcane with evidence for clustering of retrotransposon-based markers (2012) BMC Genet, 13, p. 51Andersen, J.R., LĂŒbberstedt, T., Functional markers in plants (2003) Trends Plant Sci, 8, pp. 554-560Kalendar, R., Flavell, A.J., Ellis, T.H.N., Sjakste, T., Moisy, C., Schulman, A., Analysis of plant diversity with retrotransposon-based molecular markers (2011) Heredity (Edinb), 106, pp. 520-530PGML BACMan On The Web: Grasses http://www.plantgenome.uga.edu/bacman/BACManwww.phpRice Genome Annotation Project http://rice.plantbiology.msu.edu/Bowers, J.E., Arias, M.A., Asher, R., Avise, J.A., Ball, R.T., Brewer, G.A., Buss, R.W., Soderlund, C.A., Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses (2005) Proc Natl Acad Sci U S A, 102, pp. 13206-13211Adam-Blondon, A.-F., Bernole, A., Faes, G., Lamoureux, D., Pateyron, S., Grando, M.S., Caboche, M., Chalhoub, B., Construction and characterization of BAC libraries from major grapevine cultivars (2005) Theor Appl Genet, 110, pp. 1363-1371Manetti, M.E., Rossi, M., Cruz, G.M.Q., Saccaro, N.L., Nakabashi, M., Altebarmakian, V., Rodier-Goud, M., Van Sluys, M.A., Mutator system derivatives isolated from sugarcane genome sequence (2012) Trop Plant Biol, 5, pp. 233-243Phrap http://www.phrap.org/RepeatMasker http://www.repeatmasker.org/Jurka, J., Kapitonov, V.V., Pavlicek, A., Klonowski, P., Kohany, O., Repbase update, a database of eukaryotic repetitive elements (2005) Cytogenet Genome Res, 110, pp. 462-467Han, Y., Wessler, S.R., MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences (2010) Nucleic Acids Res, 38 (22), pp. e199. , doi: 10.1093/nar/gkq862. Epub 2010 Sep 29Frickey, T., Lupas, A., CLANS: a Java application for visualizing protein families based on pairwise similarity (2004) Bioinformatics, 20, pp. 3702-3704Han, Y., Qin, S., Wessler, S.R., Comparison of class 2 transposable elements at superfamily resolution reveals conserved and distinct features in cereal grass genomes (2013) BMC Genomics, 14, p. 71Keller, O., Kollmar, M., Stanke, M., Waack, S., A novel hybrid gene prediction method employing protein multiple sequence alignments (2011) Bioinformatics, 27, pp. 757-763Majoros, W.H., Pertea, M., Salzberg, S.L., TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders (2004) Bioinformatics, 20, pp. 2878-2879Haas, B.J., Delcher, A.L., Mount, S.M., Wortman, J.R., Smith, R.K., Hannick, L.I., Maiti, R., White, O., Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies (2003) Nucleic Acids Res, 31, pp. 5654-5666Haas, B.J., Salzberg, S.L., Zhu, W., Pertea, M., Allen, J.E., Orvis, J., White, O., Wortman, J.R., Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to assemble spliced alignments (2008) Genome Biol, 9, pp. R7Petersen, T.N., Brunak, S., von Heijne, G., Nielsen, H., SignalP 4.0: discriminating signal peptides from transmembrane regions (2011) Nat Methods, 8, pp. 785-786TMHMM Server v. 2.0 http://www.cbs.dtu.dk/services/TMHMM-2.0/Rutherford, K., Parkhill, J., Crook, J., Horsnell, T., Rice, P., Rajandream, M.A., Barrell, B., Artemis: sequence visualization and annotation (2000) Bioinformatics, 16, pp. 944-945UniProt http://www.uniprot.org/InterPro: Protein sequence analysis and classification http://www.ebi.ac.uk/interpro/Conesa, A., Götz, S., Blast2GO: a comprehensive suite for functional analysis in plant genomics (2008) Int J Plant Genomics, 2008, pp. 1-12SUCEST-FUN Project http://sucest-fun.org/MG-RAST: metagenomics analysis server http://metagenomics.anl.gov/KAAS - KEGG automatic annotation server http://www.genome.jp/kegg/kaas/Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods (2011) Mol Biol Evol, 28, pp. 2731-2739Lyons, E., Freeling, M., How to usefully compare homologous plant genes and chromosomes as DNA sequences (2008) Plant J, 53, pp. 661-673Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT (1999) Nucleic Acids Symp Ser, 41, pp. 95-98Geneious - Homepage http://www.geneious.com/Heslop-Harrison, P., Schwarzacher, T., (2000) Practical In Situ Hybridization, , Oxford, UK: BIOS Scientific Publishers LtdAljanabi, S., Forget, L., Dookun, A., An improved and rapid protocol for the isolation of polysaccharide-and polyphenol-free sugarcane DNA (1999) Plant Mol Biol Report, 17, pp. 1-8Maq: Mapping and assembly with qualities http://maq.sourceforge.net/SeqMonk http://www.bioinformatics.babraham.ac.uk/projects/seqmonk/Gasic, K., Hernandez, A., Korban, S.S., RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA (2004) Plant Mol Biol Report, 22 (DECEMBER), pp. 437a-437gLi, H., Durbin, R., Fast and accurate short read alignment with Burrows-Wheeler transform (2009) Bioinformatics, 25, pp. 1754-1760Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Durbin, R., The sequence Alignment/Map format and SAMtools (2009) Bioinformatics, 25, pp. 2078-2079Thompson, J.D., Higgins, D.G., Gibson, T.J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice (1994) Nucleic Acids Res, 22, pp. 4673-4680Bandelt, H.J., Forster, P., Röhl, A., Median-joining networks for inferring intraspecific phylogenies (1999) Mol Biol Evol, 16, pp. 37-48Paterson, A.H., Freeling, M., Tang, H., Wang, X., Insights from the comparison of plant genome sequences (2010) Annu Rev Plant Biol, 61, pp. 349-37
A Molecular Linkage Map For Drosophila Mediopunctata Confirms Synteny With Drosophila Melanogaster And Suggests A Region That Controls The Variation In The Number Of Abdominal Spots
The classic approach to gene discovery relies on the construction of linkage maps. We report the first molecular-based linkage map for Drosophila mediopunctata, a neotropical species of the tripunctata group. Eight hundred F2 individuals were genotyped at 49 microsatellite loci, resulting in a map that is â450 centimorgans long. Five linkage groups were detected, and the species' chromosomes were identified through cross-references to BLASTn searches and MĂŒller elements. Strong synteny was observed when compared with the Drosophila melanogaster chromosome arms, but little conservation in the gene order was seen. The incorporation of morphological data corresponding to the number of central abdominal spots on the map was consistent with the expected location of a genomic region responsible for the phenotype on the second chromosome. © 2011 The Royal Entomological Society.2118995Aljanabi, S.M., Martinez, I., Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques (1997) Nucleic Acids Research, 25 (22), pp. 4692-4693Ananina, G., Peixoto, A.A., Souza, W.N., Klaczko, L.B., Polytene chromosome map and inversion polymorphism in Drosophila mediopunctata (2002) Memorias do Instituto Oswaldo Cruz, 97 (5), pp. 691-694Bhutkar, A., Schaeffer, S.W., Russo, S.M., Xu, M., Smith, T.F., Gelbart, W.M., Chromosome rearrangement inferred from comparisons of 12 Drosophila genomes (2008) Genetics, 179, pp. 1657-1680Dobzhansky, T., Pavan, C., Studies on Brazilian species of Drosophila (1943) Bol Facul Fil Cien Let Univ S Paulo n36 Biologia Geral n4Feldmeyer, B., Pen, I., Beukeboom, L.W., A microsatellite marker linkage map of the housefly, Musca domestica: Evidence for male recombination (2010) Insect Mol Biol, 19, pp. 575-581Ferreira, A., Da Silva, M.F., Silva, L.C., Cruz, C.D., Estimating the effects of population size and type on the accuracy of genetic maps (2006) Genet Mol Biol, 29, pp. 187-192Frota-Pessoa, O., Revision of the tripunctata group of Drosophila with description of fifteen new species (Drosophilidae, Diptera) (1954) Arquivo Do Museu Paranaense, 10, pp. 253-304Hatadani, L.M., Baptista, J.C.R., Souza, W.N., Klaczko, L.B., Colour polymorphism in Drosophila mediopunctata: Genetic (chromosomal) analysis and nonrandom association with chromosome inversions (2004) Heredity, 93 (6), pp. 525-534. , DOI 10.1038/sj.hdy.6800544Huttunen, S., Aspi, J., Hoikkala, A., Schlotterer, C., QTL analysis of variation in male courtship song characters in Drosophila virilis (2004) Heredity, 92 (3), pp. 263-269. , DOI 10.1038/sj.hdy.6800406Kastritsis, C.D., (1966) Cytological Studies of Some Species of the Tripunctata Group of Drosophila, pp. 413-474. , Univ Texas Publs, TexasKlaczko, L.B., Evolutionary Genetics of Drosophila mediopunctata (2006) Genetica, 126, pp. 43-55Kosambi, D.D., The estimation of map distances from recombination values (1944) Ann Eugen, 12, pp. 172-175Laborda, P.R., Mori, G.M., Souza, A.P., Drosophila mediopunctata microsatellites I: More than a hundred polymorphic loci available for genetic studies (2009) Conserv Genet Resour, 1, pp. 297-307Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E., MAPMAKER: An interactive computing package for constructing primary genetic linkages of experimental and natural populations (1987) Genomics, 1, pp. 174-181MacDonald, S.J., Goldstein, D.B., A quantitative genetic analysis of male sexual traits distinguishing the sibling species Drosophila simulans and D. sechellia (1999) Genetics, 153, pp. 1683-1699Margarido, G.R.A., Souza, A.P., Garcia, A.A.F., OneMap: Software for genetic mapping in outcrossing species (2007) Hereditas, 144 (3), pp. 78-79. , DOI 10.1111/j.2007.0018-0661.02000.xMollinari, M., Margarido, G.R., Vencovsky, R., Garcia, A.A.F., Evaluation of algorithms used to order markers on genetic maps (2009) Heredity, 103, pp. 494-502MĂŒller, H.J., Bearings of the 'Drosophila' work on systematics (1940) The New Systematics, pp. 185-268. , (Huxley, J. ed.), Clarendon Press, OxfordPeixoto, A.A., Klaczko, L.B., Linkage disequilibrium analysis of chromosomal inversion polymorphisms of Drosophila (1991) Genetics, 129, pp. 773-777Pool, J.E., Aquadro, C.F., The genetic basis of adaptive pigmentation variation in Drosophila melanogaster (2007) Molecular Ecology, 16 (14), pp. 2844-2851. , DOI 10.1111/j.1365-294X.2007.03324.xSchĂ€fer, M.A., Mazzi, D., Klappert, K., Kauranen, H., Vieira, J., Hoikkala, A., A microsatellite linkage map for Drosophila montana shows large variation in recombination rates, and a courtship song trait maps to an area of low recombination (2010) J Evol Biol, 23, pp. 518-527Staten, R., Schully, S.D., Noor, M.A.F., A microsatellite linkage map of Drosophila mojavensis (2004) BMC Genet, 5, pp. 12-19Stratikopoulos, E.E., Augustinos, A.A., Petalas, Y.G., Vrahatis, M.N., Mintzas, A., Mathiopoulos, K.D., Zacharopoulou, A., An integrated genetic and cytogenetic map for the Mediterranean fruit fly, Ceratitis capitata, based on microsatellite and morphological markers (2008) Genetica, 133 (2), pp. 147-157. , DOI 10.1007/s10709-007-9195-9Sturtevant, A.H., Novitski, E., The homologies of the chromosome elements in the genus Drosophila (1941) Genetics, 26, pp. 517-541True, J.R., Insect melanism: The molecules matter (2003) Trends in Ecology and Evolution, 18 (12), pp. 640-647. , DOI 10.1016/j.tree.2003.09.006Tweedie, S., Ashburner, M., Falls, K., Leyland, P., McQuilton, P., Marygold, S., FlyBase: Enhancing Drosophila Gene Ontology annotations (2009) Nucleic Acids Res, 37, pp. D555-D559. , The FlyBase ConsortiumVoorrips, R.E., Mapchart: Software for the graphical presentation of linkage maps and QTLs (2002) Journal of Heredity, 93 (1), pp. 77-78Wittkopp, P.J., Carroll, S.B., Kopp, A., Evolution in black and white: Genetic control of pigment patterns in Drosophila (2003) Trends in Genetics, 19 (9), pp. 495-504. , DOI 10.1016/S0168-9525(03)00194-XWondji, C.S., Hunt, R.H., Pignatelli, P., Steen, K., Coetzee, M., Besansky, N., An integrated genetic and physical map for the malaria vector Anopheles funestus (2005) Genetics, 171, pp. 1779-178
Characterization Of New Polymorphic Functional Markers For Sugarcane
Expressed sequence tags (ESTs) offer the opportunity to exploit single, low-copy, conserved sequence motifs for the development of simple sequence repeats (SSRs). The authors have examined the Sugarcane Expressed Sequence Tag database for the presence of SSRs. To test the utility of EST-derived SSR markers, a total of 342 EST-SSRs, which represent a subset of over 2005 SSR-containing sequences that were located in the sugarcane EST database, could be designed from the nonredundant SSR-positive ESTs for possible use as potential genic markers. These EST-SSR markers were used to screen 18 sugarcane (Saccharum spp.) varieties. A high proportion (65.5%) of the above EST-SSRs, which gave amplified fragments of foreseen size, detected polymorphism. The number of alleles ranged from 2 to 24 with an average of 7.55 alleles per locus, while polymorphism information content values ranged from 0.16 to 0.94, with an average of 0.73. The ability of each set of EST-SSR markers to discriminate between varieties was generally higher than the polymorphism information content analysis. When tested for functionality, 82.1% of these 224 EST-SSRs were found to be functional, showing homology to known genes. As the EST-SSRs are within the expressed portion of the genome, they are likely to be associated to a particular gene of interest, improving their utility for genetic mapping; identification of quantitative trait loci, and comparative genomics studies of sugarcane. The development of new EST-SSR markers will have important implications for the genetic analysis and exploitation of the genetic resources of sugarcane and related species and will provide a more direct estimate of functional diversity.522191209Aggarwal, R.K., Hendre, P.S., Varshney, R.K., Bhat, P.R., Krishna-kumar, V., Singh, L., Identification, characterization and utilization of EST-derived genic microsatellite markers for genome analyses of coffee and related species (2007) Theor. Appl. Genet, 114, pp. 359-372. , PMID:17115127, doi:10.1007/s00122- 006-0440-xhttp://cran.r-project.org/web/packages/kinship/index.html, Atkinson, B, and Therneau, T. 2007. Kinship: mixed-effects Cox models, sparse matrices, and modeling data from large pedigrees, R package version 1.1.0-17. Available fromBarbosa, A.M.M., Geraldi, I.O., Benchimol, L.L., Garcia, A.A.F., Souza Jr., C.L.S., Souza, A.P., Relationship of intra-and interpopulation tropical maize single cross hybrid performance and genetic distances computed from AFLP and SSR markers (2003) Euphytica, 130, pp. 87-99. , doi:10.1023/A: 1022381008721Barrett, B., Griffiths, A., Schreiber, M., Ellison, N., Mercer, C., Bouton, J., A microsatellite map of white clover (2004) Theor. Appl. Genet, 109, pp. 596-608. , PMID:15103407Bhat, P.R., Krishnakumar, V., Hendre, P.S., Rajendrakumar, P., Varshney, R.K., Aggarwal, R.K., Identification and characterization of expressed sequence tags-derived simple sequence repeats markers from robusta coffee variety 'CxR' (an interespecific hybrid of Coffee canephora Ă Coffee congensis) (2005) Mol. Ecol. Notes, 5, pp. 80-83. , doi:10.1111/j.1471-8286.2004. 00839.xBelaj, A., Satovic, Z., Cipriani, G., Baldoni, L., Testolin, R., Rallo, L., Trujillo, I., Comparative study of the discriminating capacity of RAPD, AFLP and SSR markers and of their effectiveness in establishing genetic relationships in olive (2003) Theor. Appl. Genet, 107, pp. 736-744. , PMID:12819908, doi:10.1007/s00122-003-1301-5Carson, D.L., Botha, F.C., Preliminary analysis of expressed sequence tags for sugarcane (2000) Crop Sci, 40, pp. 1769-1779Casu, R., Dimmock, C., Thomas, M., Bower, N., Knight, D., Grof, C., Genetic and expression profiling in sugarcane (2001) Proc. Int. Soc. Sugarcane Technol, 24, pp. 626-627Casu, R., Manners, J., Bonnett, G., Jackson, P., McIntyre, C., Dunne, R., Genomics approaches for the identification of genes determining important traits in sugarcane (2005) Field Crops Res, 92, pp. 137-147. , doi:10.1016/j.fcr.2005.01.029Chabane, K., Ablett, G.A., Cordeiro, G.M., Valkoun, J., Henry, R.J., EST versus genomics derived microsatellite markers for genotyping wild and cultivated barley (2005) Genet. Resour. Crop Evol, 52, pp. 903-909. , doi:10.1007/s10722-003-6112-7Chee, P.W., Rong, J., Williams-Coplin, D., Schulze, S.R., Paterson, A.H., EST derived PCR-based markers for functional gene homologues in cotton (2004) Genome, 47, pp. 449-462. , PMID:15190362, doi:10.1139/g04-002Chen, C., Zhou, P., Choi, Y.A., Huang, S., Jr-Gmitter, F.G., Mining and characterizing microsatellites from citrus ESTs (2006) Theor. Appl. Genet, 112, pp. 1248-1257. , PMID:16474971, doi:10.1007/ s00122-006-0226-1Cho, Y.G., Ishii, T., Temnykh, S., Chen, X., Lipovich, L., McCouch, S.R., Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.) (2000) Theor. Appl. Genet, 100, pp. 713-722. , doi:10.1007/ s001220051343Cordeiro, G.M., Taylor, G.O., Henry, R.J., Characterization of microsatellite markers from sugarcane (Saccharum spp.), a highly polyploid species (2000) Plant Sci, 155, pp. 161-168. , doi:10. 1016/S0168-9452(00) 00208-9. PMID:10814819Cordeiro, G.M., Casu, R., McIntyre, C.L., Manners, J.M., Henry, R.J., Microsatellite markers from sugarcane (Saccharum spp) ESTs cross-transferable to Erianthus and Sorghum (2001) Plant Sci, 160, pp. 1115-1123. , PMID:11337068, doi:10.1016/S0168-9452(01)00365-XCox, T.S., Kiang, Y.T., Gorman, M.B., Rogers, D.M., Relationships between coefficient of parentage and genetic similarity indices in the soybean (1985) Crop Sci, 25, pp. 529-532Creste, S., Tulmann-Neto, A., Figueira, A., Detection of single repeat polymorphisms in denaturing polyacrylamide sequencing gels by silver staining (2001) Plant Mol. Biol. Rep, 19, pp. 299-306. , doi:10.1007/BF02772828Edwards, K.J., Barker, J.H., Daly, A., Jones, C., Karp, A., Microsatellite libraries enriched for several microsatellite sequences in plants (1996) Biotechniques, 20, pp. 758-760. , PMID:8723911Efron, B., Tibshirani, R.J., (1993) An introduction to the bootstrap, , Chapman & Hall, New YorkEujayl, I., Sorrells, M., Baum, M., Wolters, P., Powell, W., Assessment of genotypic variation among cultivated durum wheat based on EST-SSRs and genomic SSRs (2001) Euphytica, 119, pp. 39-43. , doi:10.1023/A:1017537720475Fraser, L.G., Harvey, C.F., Crowhurst, R.N., De Silva, H.N., EST-derived microsatellites from Actinidia species and their potential for mapping (2004) Theor. Appl. Genet, 108, pp. 1010-1016. , PMID:15067386, doi:10.1007/s00122-003- 1517-4Gao, L.F., Jing, R.L., Huo, N.X., Li, X.P., Zhou, R.H., Chang, X.P., One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat (2004) Theor. Appl. Genet, 108, pp. 1392-1400. , PMID:14968301, doi:10.1007/s00122-003-1554-zGarcia, A.A.F., Kido, E.A., Meza, A.N., Souza, H.M.B., Pinto, L.R., Pastina, M.M., Leite, C.S., Souza, A.P., Development of an integrated genetic map of a sugarcane (Saccharum spp.) commercial cross, based on a maximum-likelihood approach for estimation of linkage and linkage phases (2006) Theor. Appl. Genet, 112, pp. 298-314. , PMID:16307229, doi:10.1007/s00122-005-0129-6Graham, J., Smith, K., MacKenzie, K., Jorgenson, L., Hackett, C., Powell, W., The construction of a genetic linkage map of red raspberry (Rubus idaeus subsp. idaeus) based on AFLPs, genomic-SSR and EST-SSR markers (2004) Theor. Appl. Genet, 109, pp. 740-749. , PMID:15127204, doi:10.1007/s00122- 004-1687-8GuimarĂŁes, P.S., Paterniani, M.E.A.G.Z., LĂŒders, R.R., Souza, A.P., Laborda, P.R., Oliveira, K.M., CorrelacĂŁo da heterose de hĂbridos de milho com divergĂȘncia genĂ©tica entre linhagens. (2007) Pesq. Agropec. Bras, 42, pp. 811-816Gupta, P.K., Varshney, R.K., The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat (2000) Euphytica, 113, pp. 163-185. , doi:10. 1023/A:1003910819967Gupta, P.K., Rutsgi, S., Sharma, S., Singh, R., Kumar, N., Balyan, H.S., Transferable EST-SSR markers for study of polymorphism and genetic diversity in bread wheat (2003) Mol. Genet. Genomics, 270, pp. 315-323. , PMID:14508680, doi:10.1007/s00438-003-0921-4Han, Z.G., Guo, W.Z., Song, X.L., Zhang, T.Z., Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton (2004) Mol. Genet. Genomics, 272, pp. 308-327. , PMID:15368122, doi:10.1007/s00438-004-1059-8Han, Z.G., Wang, C., Song, X., Guo, W., Gou, J., Li, C., Characteristics, development and mapping of Grossypium hirsutum derived EST-SSRs in allotetraploid cotton (2006) Theor. Appl. Genet, 112, pp. 430-439. , PMID:16341684, doi:10.1007/s00122-005-0142-9Hoisington, D., Khairallah, M., GonzĂĄlez-de-LĂ©on, D., (1994) Laboratory protocols, , CIMMYT Applied Molecular Genetics Laboratory. CYMMYT, MĂ©xicoIhaka, R., and Gentleman, R. 1996. R: a language for data analysis and graphics. J. Comput. Graph. Stat. 5: 299-314. doi:10.2307/ 1390807Jaccard, P., (1901) Etude comparative de la distribuition florale dans une portion des Alpes et des Jura. Bull, 37, pp. 547-579. , Soc. Vandoise Sci. NatJannoo, N., Grivet, L., Seguin, M., Paulet, F., Domaingue, R., Rao, P.S., a. Molecular investigation of the genetic base of sugarcane cultivars (1999) Theor. Appl. Genet, 99, pp. 171-184. , doi:10. 1007/s001220051222Kantety, R.V., Rota, M.L., Matthews, D.E., and Sorrells, M.E. 2002. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol. Biol. 48: 501-510. doi:10.1023/A:1014875206165. PMID:11999831Kempthorne, O., (1957) An introduction to genetic statistics, , John Wiley & Sons, New YorkKhlestkina, E.K., Than, M.H.M., Pestsova, E.G., Röder, M.S., Malyshev, S.V., Korzu, V., Börner, A., Mapping of 99 new microsatellite-derived loci in rye (Secale cereale L.) including 39 expressed sequence tags (2004) Theor. Appl. Genet, 109, pp. 725-732. , PMID:15300380, doi:10.1007/s00122-004-1659-zKing, G., Nienhuis, J., Hussey, C., Genetic similarity among ecotypes of Arabidopsis thaliana estimated by analysis of restriction fragment length polymorphisms (1993) Theor. Appl. Genet, 86, pp. 1028-1032Kota, R., Varshney, R.K., Thiel, T., Dehmer, K.J., Graner, A., Generation and comparison of EST-derived SSRs and SNPs in barley (Hordeum vulgare L.) (2001) Hereditas, 135, pp. 145-151. , PMID:12152327, doi:10.1111/j.1601-5223.2001. 00145.xLima, M.L.A., Garcia, A.A.F., Oliveira, K.M., Matsuoka, S., Souza Jr., C.L., Souza, A.P., Analysis of genetics similarity detected by AFLP and coefficient of parentage among genotypes of sugarcane (Saccharum spp.) (2002) Theor. Appl. Genet, 104, pp. 30-38. , PMID:12579425, doi:10.1007/s001220200003Lu, Y.H., D'Hont, A., Paulet, F., Grivet, L., Arnaud, M., Glaszmann, J.C., Molecular diversity and genome structure in modern sugarcane varieties (1994) Euphytica, 78, pp. 217-226. , doi:10. 1007/BF00027520Mateescu, R.G., Zhang, Z., Tsai, K., Phavaphutanon, J., Burton-Wurster, N.I., Lust, G., Analysis of allele fidelity, polymorphic information content, and density of microsatellites in a genome-wide screening for hip dysplasia in a crossbreed pedigree (2005) J. Hered, 96, pp. 847-853. , PMID:16251522, doi:10.1093/jhered/esi109Nicot, N., Chiquet, V., Gandon, B., Amilhat, L., Legeai, F., Leroy, P., Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs) (2004) Theor. Appl. Genet, 109, pp. 800-805. , PMID:15146317, doi:10.1007/s00122-004-1685-xOliveira, K.M., Pinto, L.R., Marconi, T.G., Margarido, G.R.A., Pastina, M.M., Teixeira, L.H., Functional genetic linkage map based on EST-markers for a sugarcane (Saccharum spp.) commercial cross (2007) Mol. Breed, 20, pp. 189-208. , doi:10.1007/ s11032-007-9082-1Pashley, C.H., Ellis, J.R., McCauley, D.E., Burke, J.M., EST database as a source for molecular markers: Lessons from Helianthus (2006) J. Hered, 97, pp. 381-388. , PMID:16840524, doi:10.1093/jhered/esl013Pflieger, S., Lefebvre, V., Causse, M., The candidate gene approach in plant genetics: A review (2001) Mol. Breed, 7, pp. 275-291. , doi:10.1023/A:1011605013259Pillen, K., Binder, A., Kreuzkam, B., Ramsay, L., Waugh, R., Förster, J., Leon, J., Mapping new EMBL-derived barley microsatellites and their use in differentiating German barley cultivars (2000) Theor. Appl. Genet, 101, pp. 652-660. , doi:10.1007/ s001220051527Pinto, L.R., Oliveira, K.M., Ulian, E.C., Garcia, A.A.F., Souza, A.P., Survey in the expressed sequence tag database (SU-CEST) for simple sequence repeats (2004) Genome, 47, pp. 795-804. , PMID:15499394, doi:10.1139/g04-055Pinto, L.R., Oliveira, K.M., Marconi, T.G., Garcia, A.A.F., Ulian, E.C., Souza, A.P., Characterization of novel sugarcane expressed sequence tag microsatellites and their comparison with genomic SSRs (2006) Plant Breed, 125, pp. 378-384. , doi:10.1111/j. 1439-0523.2006.01227.xPowell, W., Machray, G.C., Provan, J., Polymorphism revealed by simple sequence repeats (1996) Trends Plant Sci, 1, pp. 215-221Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., Rafalsky, A., b. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis (1996) Mol. Breed, 2, pp. 225-238. , doi:10.1007/BF00564200Price, S., Cytology of Chinese and North Indian sugarcanes (1968) Econ. Bot, 22, pp. 155-164Qian, W., Sass, O., Meng, J., Li, M., Frauen, M., and Jung, C. 2007. Heterotic patterns in rapeseed (Brassica napus L.): I. Crosses between spring and Chinese semi-winter lines. Theor. Appl. Genet. 115: 27-34. doi:10.1007/s00122-007-0537-x. PMID:17453172Raboin, L.-M., Oliveira, K.M., Lecunff, L., Telismart, H., Roques, D., Butterfield, M., Genetic mapping in the high polyploid sugarcane using a bi-parental progeny: Identification of a gene controlling stalk colour and new rust resistance gene (2006) Theor. Appl. Genet, 112, pp. 1382-1391. , PMID:16552554, doi:10.1007/s00122-006-0240-3Rossetto, M., McNally, J., Henry, R.J., Evaluating the potential of SSR: Flanking regions examining taxonomic relationships in the Vitaceae (2002) Theor. Appl. Genet, 104, pp. 61-66. , PMID:12579429, doi:10.1007/s001220200007Rudd, S., Expressed sequence tags: Alternative or complement to whole genome sequences? (2003) Trends Plant Sci, 8, pp. 321-329. , PMID:12878016, doi:10.1016/S1360-1385(03)00131-6Rungis, D., BĂ©rubĂ©, Y., Zhang, J., Ralph, S., Ritland, C.E., Ellis, B.E., Robust simple sequence repeat markers for spruce (Picea spp.) from expressed sequence tags (2004) Theor. Appl. Genet, 109, pp. 1283-1294. , PMID:15351929, doi:10.1007/s00122-004-1742-5Russell, J., Booth, A., Fuller, J., Harrower, B., Hedley, P., Machray, G., Powell, W., A comparison of sequence-based polymorphism and haplotype content in transcribed and anonymous regions of the barley (2004) Genome, 47, pp. 389-398. , PMID:15060592Saha, M.C., Mian, M.A.R., Eujayl, I., Zwonitzer, J.C., Wang, L.J., May, G.D., Tall fescue EST-SSR markers with trans-ferability across several grass species (2004) Theor. Appl. Genet, 109, pp. 783-791. , PMID:15205737, doi:10.1007/s00122-004- 1681-1Scott, K.D., Eggler, P., Seaton, G., Rossetto, M., Ablett, E.M., Lee, L.S., Henry, R.J., Analysis of SSRs derived from grape ESTs (2000) Theor. Appl. Genet, 100, pp. 723-726. , doi:10.1007/ s001220051344Sharopova, N., McMullen, M.D., Schultz, L., Schroeder, S., Sanchez-Villeda, H., Gardiner, J., Development and mapping of SSR markers for maize (2002) Plant Mol. Biol, 48, pp. 463-481. , doi:10.1023/A: 1014868625533. PMID:12004892Sneath, P.H.A., Sokal, R.R., (1973) Numerical taxonomy, , Freeman, San Francisco, CalifTeklewold, A., Becker, H.C., Comparison of phenotypic and molecular distance to predict heterosis and F1 performance in Ethiopian mustard (Brassica carinata A. Braum) (2006) Theor. Appl. Genet, 112, pp. 752-759. , PMID:16365759, doi:10.1007/s00122-005-0180-3Temnykh, S., Park, W.D., Ayres, N., Cartinhour, S., Hauck, N., Lipovich, L., Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.) (2000) Theor. Appl. Genet, 100, pp. 697-712. , doi:10.1007/s001220051342Tessier, C., David, J., This, P., Boursiquot, J.M., Charrier, A., Optimization of the choice of molecular markers for varietal identification in Vitis vinifera L (1999) Theor. Appl. Genet, 98, pp. 171-177. , doi:10.1007/s001220051054Gene Ontology: Tool for the unification of biology. Nat.e Genet (2000), 25, pp. 25-29. , The Gene Ontology ConsortiumThiel, T., Michalek, W., Varshney, R.K., Graner, A., Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.) (2003) Theor. Appl. Genet, 106, pp. 411-422. , PMID:12589540Tivang, J.G., Nienhuis, J., Smith, O.S., Estimation of sampling variance of molecular marker data using the bootstrap procedure (1994) Theor. Appl. Genet, 89, pp. 259-264. , doi:10.1007/ BF00225151Varshney, R.K., Thiel, T., Stein, N., Langridge, P., Graner, A., In silico analysis on frequency and distribution of micro-satellites in ESTs of some cereal species (2002) Cell. Mol. Biol. Lett, 7, pp. 537-546. , PMID:12378259Varshney, R.K., Graner, A., Sorrells, M.E., a. Genic microsatellite markers in plants: Features and applications (2005) Trends Biotechnol, 23, pp. 48-55. , PMID:15629858, doi:10.1016/j.tibtech.2004.11.005Varshney, R.K., Sigmund, R., Borner, A., Korzun, V., Stein, N., Sorrells, M.E., Graner, A., b. Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice (2005) Plant Sci, 168, pp. 195-202. , doi:10.1016/j. plantsci.2004.08.001Warnke, S.E., Barker, R.E., Jung, G., Sim, S., Mian, M.A.R., Saha, M.C., Genetic linkage mapping of an annual x perennial ryegrass population (2004) Theor. Appl. Genet, 109, pp. 294-304. , PMID:15071730, doi:10.1007/s00122-004- 1647-3Yu, C.Y., Hu, S.W., Zhao, H.X., Guo, A.G., Genetic distances revealed by morphological characters, isozymes, protein and RAPD markers and their relationships with hybrid performance in oilseed rape (Brassica napus L.) (2005) Theor. Appl. Genet, 110, pp. 511-518. , PMID:15578151, doi:10.1007/s00122-004- 1858-7Yu, J.K., Dake, T.M., Singh, S., Benscher, D., Li, W., Gill, B., Sorrells, E., Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat (2004) Genome, 47, pp. 805-818. , PMID:15499395, doi:10.1139/g04-05
Marker-trait Association And Epistasis For Brown Rust Resistance In Sugarcane
Sugarcane brown rust, caused by Puccinia melanocephala, is one of the major sugarcane diseases. The detection of molecular markers associated to brown rust resistance and also of its epistatic interactions were investigated in a mapping population obtained by crossing the brown rust susceptible clone IACSP953018 and the resistant cultivar IACSP933046. Resistance was evaluated in a field trial in plant cane and first ratoon under natural infection and scored using a diagrammatic scale from 1 (most resistance) to 9 (most susceptible). A total of 488 single dose markers (amplified fragment length polymorphism AFLP, genomic microsatellite gSSR and expressed sequence tag derived microsatellites EST-SSRs) were evaluated through a single marker trait association approach for brown rust resistance. Sixty one putative quantitative trait alleles (QTA) for brown rust (30 in plant cane, 31 in ratoon cane; 10 of them was common for both crop years) were detected of which several were related to resistance. Twenty one (34 %) of the markers associated to QTA derived from ESTs. Some of them have similarity to genes/proteins related to disease response pathways. The estimates of the proportion of the total phenotypic variation ((Formula presented.)) explained by each significant main QTA effect ranged from 1.84 to 7.22 %, while the total explained variance estimates were 37.25 % (plant cane) and 43.26 % (ratoon cane) considering all main significant QTA effects. Fifty significant digenic epistatic interactions were suggested with the majority (68 %) contributing to increase brown rust resistance. Together, these probable epistatic effects explain 16.26 % (plant cane) and 17.22 % (ratoon cane) of the total phenotypic variance. Although evidence of epistasis was observed, linkage cannot be ruled out as the majority of the markers involved in the digenic interaction could not be addressed to any linkage group. The results suggest that epistasis may have an important contribution on sugarcane resistance to brown rust