47,367 research outputs found

    Theory of Electromagnetic Wave Transmission through Metallic Gratings of Subwavelength Slits

    Full text link
    We present FDTD calculations for transmission of light and other electromagnetic waves through periodic arrays of slits in a metallic slab. The results show resonant, frequency dependent, transmittance peaks for subwavelength widths of the slits which can be up to a factor of ten with respect to those out of resonance. Although our conclusions agree with previous work by Lezec and Thio as regards both the magnitude of the enhancement and the lack of contribution of surface plasmon polaritons of the metal surface to this effect, we derive an interpretation from a theory that deals with emerging beam- Rayleigh anomalies of the grating, and with Fabry-Perot resonances of the perforated slab considered as an effective medium.Comment: 12 pages 3 figure

    The antenna DSA 3 and its potential use for Radio Astronomy

    Get PDF
    The European Space Agency (ESA) will inaugurate its third Deep Space Antenna (DSA 3) by the end of 2012. DSA 3 will be located in Argentina near the city of Malarg"ue in the Mendoza province. While the instrument will be primarily dedicated to communications with interplanetary missions, the characteristics of its antenna and receivers will also enable standalone leading scientific contributions, with a high scientific-technological return. We outline here scientific proposals for a radio astronomical use of DSA 3.Comment: 4 pages, submitted as Proceedings for the BAA

    Simulating spin-3/2 particles at colliders

    Full text link
    Support for interactions of spin-3/2 particles is implemented in the FeynRules and ALOHA packages and tested with the MadGraph 5 and CalcHEP event generators in the context of three phenomenological applications. In the first, we implement a spin-3/2 Majorana gravitino field, as in local supersymmetric models, and study gravitino and gluino pair-production. In the second, a spin-3/2 Dirac top-quark excitation, inspired from compositness models, is implemented. We then investigate both top-quark excitation and top-quark pair-production. In the third, a general effective operator for a spin-3/2 Dirac quark excitation is implemented, followed by a calculation of the angular distribution of the s-channel production mechanism.Comment: 20 pages, 7 figure

    Spin order in the one-dimensional Kondo and Hund lattices

    Get PDF
    We study numerically the one-dimensional Kondo and Hund lattices consisting of localized spins interacting antiferro or ferromagnetically with the itinerant electrons, respectively. Using the Density Matrix Renormalization Group we find, for both models and in the small coupling regime, the existence of new magnetic phases where the local spins order forming ferromagnetic islands coupled antiferromagnetically. Furthermore, by increasing the interaction parameter ∣J∣|J| we find that this order evolves toward the ferromagnetic regime through a spiral-like phase with longer characteristic wave lengths. These results shed new light on the zero temperature magnetic phase diagram for these models.Comment: PRL, to appea

    Selective Enzymatic Oxidation of Silanes to Silanols

    Get PDF
    Compared to the biological world's rich chemistry for functionalizing carbon, enzymatic transformations of the heavier homologue silicon are rare. We report that a wild‐type cytochrome P450 monooxygenase (P450_(BM3) from Bacillus megaterium, CYP102A1) has promiscuous activity for oxidation of hydrosilanes to give silanols. Directed evolution was applied to enhance this non‐native activity and create a highly efficient catalyst for selective silane oxidation under mild conditions with oxygen as the terminal oxidant. The evolved enzyme leaves C−H bonds present in the silane substrates untouched, and this biotransformation does not lead to disiloxane formation, a common problem in silanol syntheses. Computational studies reveal that catalysis proceeds through hydrogen atom abstraction followed by radical rebound, as observed in the native C−H hydroxylation mechanism of the P450 enzyme. This enzymatic silane oxidation extends nature's impressive catalytic repertoire

    Statistical Signatures of Photon Localization

    Full text link
    The realization that electron localization in disordered systems (Anderson localization) is ultimately a wave phenomenon has led to the suggestion that photons could be similarly localized by disorder. This conjecture attracted wide interest because the differences between photons and electrons - in their interactions, spin statistics, and methods of injection and detection - may open a new realm of optical and microwave phenomena, and allow a detailed study of the Anderson localization transition undisturbed by the Coulomb interaction. To date, claims of three-dimensional photon localization have been based on observations of the exponential decay of the electromagnetic wave as it propagates through the disordered medium. But these reports have come under close scrutiny because of the possibility that the decay observed may be due to residual absorption, and because absorption itself may suppress localization. Here we show that the extent of photon localization can be determined by a different approach - measurement of the relative size of fluctuations of certain transmission quantities. The variance of relative fluctuations accurately reflects the extent of localization, even in the presence of absorption. Using this approach, we demonstrate photon localization in both weakly and strongly scattering quasi-one-dimensional dielectric samples and in periodic metallic wire meshes containing metallic scatterers, while ruling it out in three-dimensional mixtures of aluminum spheres.Comment: 5 pages, including 4 figure
    • 

    corecore