14 research outputs found

    First record of the alien pest Rhaponticum repens (Compositae) in the Iberian Peninsula

    No full text
    First record of the alien pest Rhaponticum repens (Compositae) in the Iberian Peninsula.- Rhaponticum repens is reported for the first time for the flora of the Iberian Peninsula. The species is native from Central Asia and has become invasive in Argentina, Canada, Europe and the USA. It was detected for the first time in abandoned fields from Vilablareix, near the city of Girona (Catalonia, Spain) and in the valley of the Vinalopó in Alicante (Valencia, Spain), where it was collected as early as in 1959 but misdentified. Molecular data, based on nrDNA region ITS, suggest that the reported populations may be closely related to plants from the United States. Due to the extremely noxious character of the species and the possible relationship of Spanish plants with the invasive American populations, some kind of monitoring is recommended.Rhaponticum repens (Compositae), una nueva planta alóctona para la Península Ibérica.- Se cita por primera vez la especie Rhaponticum repens para la flora de la Península Ibérica. Rhaponticum repens es una especie nativa de Asia central que actúa como invasora en diversos países como Argentina, Canadá o los Estados Unidos. Se ha encontrado por primera vez en campos de cultivo abandonados en el pueblo de Vilablareix, cerca de la ciudad de Girona (Cataluña, España) y en el valle del Vinalopó (Valencia, España), donde fue recolectada y mal identificada en 1959. Los datos moleculares, obtenidos a partir de la región ITS del nrDNA, sugieren que estas poblaciones podrían estar relacionadas con plantas invasoras de Estados Unidos. Debido al carácter extremadamente invasor de la especie, y a su posible origen secundario a partir de las poblaciones norteamericanas, se recomienda el seguimiento de estas poblacione

    Phylogeny of the <i>Centaurea</i> group (Centaurea, Compositae): geography is a better predictor than morphology

    No full text
    The Centaurea group is part of the Circum-Mediterranean Clade (CMC) of genus Centaurea subgenus Centaurea, a mainly Mediterranean plant group with more than 200 described species. The group is traditionally split on morphological basis into three sections: Centaurea, Phalolepis and Willkommia. This division, however, is doubtful, especially in light of molecular approaches. In this study we try to resolve this phylogenetic problem and to consolidate the circumscription and delimitation of the entire group against other closely related groups. We analyzed nuclear (internal transcribed spacer of the ribosomal genes) and chloroplast (rpl32-trnL intergenic spacer) DNA regions for most of the described species of the Centaurea group using phylogenetic and network approaches, and we checked the data for recombination. Phylogeny was used to reconstruct the evolution of the lacerate-membranaceous bract appendages using parsimony. The magnitude of incomplete lineage sorting was tested estimating the effective population sizes. Molecular dating was performed using a Bayesian approach, and the ancestral area reconstruction was conducted using the Dispersal–Extinction–Cladogenesis method. Monophyly of the Centaurea group is confirmed if a few species are removed. Our results do not support the traditional sectional division. There is a high incongruence between the two markers and between genetic data and morphology. However, there is a clear relation between geography and the structure of the molecular data. Diversification in the Centaurea group mainly took place during the Pliocene and Pleistocene. The ancestral area infered for the Circum-Mediterranean Clade of Centaurea is the Eastern Mediterranean, whereas for the Centaurea group it is most likely NW-Africa. The large incongruencies, which hamper phylogenetic reconstruction, are probably the result of introgression, even though the presence of incomplete lineage sorting as an additional factor cannot be ruled out. Convergent evolution of morphological traits may have led to incongruence between morphology-based, traditional systematics and molecular results. Our results also cast major doubts about current species delimitation

    Reproductive Biology and Functional Response of Dineulophus phtorimaeae

    No full text
    The tomato moth, Tuta absoluta (Lepidoptera: Gelechiidae), is a major pest in South America and is at present an important invasive species in the Mediterranean Basin. The larval stadium mines leaves, stems, and fruits, and chemical control is the most used control method in both its original range and the invaded distribution regions. Since current T. absoluta control strategies seem limited, biological control is a prominent tool to be applied abroad. The naturally occurring larval ectoparasitoid in Argentina and Chile Dineulophus phtorimaeae (Hymenoptera: Eulophidae) has been reported to have potential biocontrol efficiency. In this study, the ovigeny strategy of D. phtorimaeae was analyzed throughout the adult female lifetime, and the functional response of females offered a range of 2–15 T. absoluta larvae was measured over a 48-hour period. Mean D. phtorimaeae egg load was 4.15 eggs, and egg production resulted in extremely synovigenic behavior. Meanwhile, a decreasing number of eggs, due to resorption, was found. Proportions of attacked (host-fed and/or parasitized) and only host-fed hosts by the ectoparasitoid were density independent for the tested host range, exhibiting a type I functional response to T. absoluta, with an attack rate of 0.20 host larvae. Meanings of this reproductive strategy in evolutionary time as well as the consequences for augmentative biological control programs are discussed
    corecore