57,659 research outputs found

    Symmetry limit properties of a priori mixing amplitudes for non-leptonic and weak radiative decays of hyperons

    Full text link
    We show that the so-called parity-conserving amplitudes predicted in the a priori mixing scheme for non-leptonic and weak radiative decays of hyperons vanish in the strong-flavor symmetry limit

    Non-ergodic states induced by impurity levels in quantum spin chains

    Full text link
    The semi-infinite XY spin chain with an impurity at the boundary has been chosen as a prototype of interacting many-body systems to test for non-ergodic behavior. The model is exactly solvable in analytic way in the thermodynamic limit, where energy eigenstates and the spectrum are obtained in closed form. In addition of a continuous band, localized states may split off from the continuum, for some values of the impurity parameters. In the next step, after the preparation of an arbitrary non-equilibrium state, we observe the time evolution of the site magnetization. Relaxation properties are described by the long-time behavior, which is estimated using the stationary phase method. Absence of localized states defines an ergodic region in parameter space, where the system relaxes to a homogeneous magnetization. Out of this region, impurity levels split from the band, and localization phenomena may lead to non-ergodicity.Comment: 10 pages, 5 figures. arXiv admin note: substantial text overlap with arXiv:1703.0344

    Equivalence between the real time Feynman histories and the quantum shutter approaches for the "passage time" in tunneling

    Get PDF
    We show the equivalence of the functions Gp(t)G_{\rm p}(t) and Ψ(d,t)2|\Psi(d,t)|^2 for the ``passage time'' in tunneling. The former, obtained within the framework of the real time Feynman histories approach to the tunneling time problem, using the Gell-Mann and Hartle's decoherence functional, and the latter involving an exact analytical solution to the time-dependent Schr\"{o}dinger equation for cutoff initial waves

    A matrix pencil approach to the existence of compactly supported reconstruction functions in average sampling

    Get PDF
    The aim of this work is to solve a question raised for average sampling in shift-invariant spaces by using the well-known matrix pencil theory. In many common situations in sampling theory, the available data are samples of some convolution operator acting on the function itself: this leads to the problem of average sampling, also known as generalized sampling. In this paper we deal with the existence of a sampling formula involving these samples and having reconstruction functions with compact support. Thus, low computational complexity is involved and truncation errors are avoided. In practice, it is accomplished by means of a FIR filter bank. An answer is given in the light of the generalized sampling theory by using the oversampling technique: more samples than strictly necessary are used. The original problem reduces to finding a polynomial left inverse of a polynomial matrix intimately related to the sampling problem which, for a suitable choice of the sampling period, becomes a matrix pencil. This matrix pencil approach allows us to obtain a practical method for computing the compactly supported reconstruction functions for the important case where the oversampling rate is minimum. Moreover, the optimality of the obtained solution is established

    Analysis, modeling, and control of half-bridge current-source converter for energy management of supercapacitor modules in traction applications

    Get PDF
    In this work, an in-depth investigation was performed on the properties of the half-bridge current-source (HBCS) bidirectional direct current (DC)-to-DC converter, used to interface two DC-link voltage sources with a high-voltage-rating mismatch. The intended implementation is particularly suitable for the interfacing of a supercapacitor (SC) module and a battery stack in a hybrid storage system(HSS) for automotive applications. It is demonstrated that the use of a synchronous rectification (SR) modulation scheme benefits both the power-stage performance (in terms of efficiency and reliability) and the control-stage performance (in terms of simplicity and versatility). Furthermore, an average model of the converter, valid for every operating condition, is derived and utilized as a tool for the design of the control system. This model includes the effects of parasitic elements (mainly the leakage inductance of the transformer) and of the converter snubbers. A 3 kW prototype of the converter was used for experimental validation of the converter modeling, design, and performance. Finally, a discussion on the control strategy of the converter operation is included
    corecore