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in shift-invariant spaces by using thewell-knownmatrix pencil the-

ory. In many common situations in sampling theory, the available

data are samples of some convolution operator acting on the func-

tion itself: this leads to the problemof average sampling, also known

as generalized sampling. In this paper we deal with the existence of

a sampling formula involving these samples and having reconstruc-

tion functionswith compact support. Thus, low computational com-

plexity is involved and truncation errors are avoided. In practice, it is

accomplished bymeans of a FIR filter bank. An answer is given in the

light of the generalized sampling theory by using the oversampling

technique:more samples than strictly necessary are used. The origi-

nal problem reduces to finding a polynomial left inverse of a polyno-

mial matrix intimately related to the sampling problem which, for

a suitable choice of the sampling period, becomes a matrix pencil.

This matrix pencil approach allows us to obtain a practical method

for computing the compactly supported reconstruction functions for

the important casewhere the oversampling rate isminimum.More-

over, the optimality of the obtained solution is established.
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1. Statement of the problem

Let Vϕ be a shift-invariant space in L2(R) with stable generator ϕ ∈ L2(R), i.e.,

Vϕ :=
⎧⎨⎩f (t) = ∑

n∈Z

an ϕ(t − n) : {an} ∈ �2(Z)

⎫⎬⎭ ⊂ L2(R),

where the sequence {ϕ(· − n)}n∈Z is a Riesz basis for Vϕ . A Riesz basis in a separable Hilbert space is

the image of an orthonormal basis by means of a bounded invertible operator (see [4]).

Nowadays, sampling theory in shift-invariant spaces is a very active research topic (see, for instance,

[1–3,8] and the references therein) since an appropriate choice for the generator ϕ (for instance, a B-

spline) eliminates some of the problems associated with the classical Shannon’s sampling theory [17].

On the other hand, in many common situations the available data are samples of some filtered version

f ∗ h of the signal f itself. Suppose that a linear time-invariant system L of one of the following types

(or a linear combination of both) is defined on Vϕ:

(a) The impulse response h of L belongs to L1(R) ∩ L2(R). Thus, for any f ∈ Vϕ we have

(Lf ) (t) := [f∗h](t) =
∫ ∞
−∞

f (x)h(t − x)dx, t ∈ R.

(b) L involves samples of the function itself, i.e., (Lf )(t) = f (t+d), t ∈ R, for some constant d ∈ R.

Under suitable conditions, Unser and Aldroubi [16] have derived sampling formulas allowing the re-

covering of any function f ∈ Vϕ from the sequence of samples {(Lf ) (n)}n∈Z. Concretely, they proved

that for any f ∈ Vϕ ,

f (t) = ∑
n∈Z

Lf (n)SL(t − n), t ∈ R, (1)

where the sequence {SL(t − n)}n∈Z is a Riesz basis for Vϕ . Notice that a reconstruction function SL
with compact support implies low computational complexity and avoids truncation errors. Evenwhen

the generator ϕ has compact support, rarely the same occurs with the reconstruction function SL in

formula (1). Away toovercome thisdifficulty is touse theoversampling technique, i.e., forfixedpositive

integers s > r, consider the sampling period T := r/s < 1. The goal is to recover any function f ∈ Vϕ

by using a sampling expansion involving the samples {(Lf )(rn/s)}n∈Z. This can be done in the light

of the generalized sampling theory developed in [10]. Indeed, since the sampling points rn/s, n ∈ Z,

can be expressed as {rn/s}n∈Z = {rm + (j − 1)r/s}m∈Z, j=1,2,...,s, the initial problem is equivalent to

the recovery of f ∈ Vϕ from the sequence of samples {Ljf (rn)}n∈Z, j=1,2,...,s, where the linear time-

invariant systems Lj , j = 1, 2, . . . , s, are given in terms of L by: (Ljf )(t) := (Lf ) [t + (j − 1)r/s],

t ∈ R. Following the notation introduced in [10], consider the functions gj ∈ L2(0, 1), j = 1, 2, . . . , s,
defined as:

gj(w) := ∑
n∈Z

(Lϕ) [n + (j − 1)r/s] e−2π inw = ∑
n∈Z

(Ljϕ)(n)e−2π inw, (2)

the s × r matrix of functions G(w) given by:

G(w) :=

⎡⎢⎢⎢⎢⎢⎢⎣
g1(w) g1(w + 1

r
) · · · g1(w + r−1

r
)

g2(w) g2(w + 1
r
) · · · g2(w + r−1

r
)

...
...

...

gs(w) gs(w + 1
r
) · · · gs(w + r−1

r
)

⎤⎥⎥⎥⎥⎥⎥⎦ =
[
gj

(
w + k − 1

r

)]
j=1,2,...,s
k=1,2,...,r

,
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and its related constants

αG := ess inf
w∈(0,1/r)

λmin[G∗(w)G(w)], βG := ess sup
w∈(0,1/r)

λmax[G∗(w)G(w)],

where G∗(w) denotes the transpose conjugate of the matrix G(w), and λmin and λmax denote, respec-

tively, the smallest and the largest eigenvalue of the positive semidefinite matrix G∗(w)G(w). Notice
that in the definition of the matrix G(w) we are considering the 1-periodic extensions of the involved

functions gj , j = 1, 2, . . . , s. Thus, the generalized sampling theory in [10] can be summarized as:

Theorem 1. Assume that the functions gj, j = 1, 2, . . . , s, defined in (2) belong to L∞(0, 1) (this is

equivalent to βG < ∞). Then the following statements are equivalent:

(i) αG > 0.

(ii) There exist functions aj in L∞(0, 1), j = 1, 2, . . . , s, such that

[a1(w), . . . , as(w)] G(w) = [1, 0, . . . , 0] a.e. in (0, 1). (3)

(iii) There exists a frame for Vϕ having the form {Sj(· − rn)}n∈Z,j=1,2,...,s such that, for any f ∈ Vϕ , we

have

f (t) = ∑
n∈Z

s∑
j=1

(Ljf )(rn) Sj (t − rn) in L2(R). (4)

In case the equivalent conditions are satisfied, the reconstruction functions Sj, j = 1, 2, . . . , s, in (4) are

given by:

Sj(t) = r
∑
n∈Z

〈aj, e−2π inw〉L2(0,1)ϕ(t − n), (5)

where the functions aj, j = 1, 2, . . . , s, satisfy (3). The convergence of the series in (4) is also absolute and

uniform on R.

For the details on the frame theory see the superb monograph [4] and the references therein.

Observing (5), in case the generator ϕ is compactly supported, we have reconstruction functions Sj of

compact supportwhenever the functionsaj in (3) are trigonometricpolynomials.Notice that compactly

supported reconstruction functions Sj , j = 1, 2, . . . , s, in formula (4) involve low computational

complexity and it avoids truncation errors. On the other hand, a sampling formula as those in (4)

can be seen as a filter bank, where G(w) is itsmodulation matrix. Indeed, denoting the reconstruction

function in (5) as Sj(t) = ∑
n∈Z dj(n)ϕ(t − n), j = 1, 2, . . . , s, for any f (t) = ∑

m∈Z cm ϕ(t − m) in
Vϕ one can easily deduce that

cm =
s∑

j=1

∑
n∈Z

(Ljf )(rn)dj(m − rn), m ∈ Z. (6)

As a consequence, compactly supported reconstruction functions Sj entail a FIR (finite impulse re-

sponse, i.e., only a finite number of coefficients dj(n) are nonzero) filter bank.

It is worth to mention that whenever the 1-periodic functions gj , j = 1, 2, . . . , s, are continuous

on R, the conditions in Theorem 1 are also equivalent to the condition recently introduced in [11,

Corollary 1]: (iv) rank G(w) = r for all w ∈ R.

In order to find reconstruction functions Sj , j = 1, 2, . . . , s, in formula (4) having compact support

we assume in what follows that the generator ϕ and Lϕ are compactly supported. We introduce the
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s × r matrix

G(z) :=

⎡⎢⎢⎢⎢⎢⎢⎣
g1(z) g1(Wz) · · · g1(W

r−1z)

g2(z) g2(Wz) · · · g2(W
r−1z)

...
...

...

gs(z) gs(Wz) · · · gs(W
r−1z)

⎤⎥⎥⎥⎥⎥⎥⎦ , (7)

where W := e−2π i/r and gj(z) := ∑
n∈Z(Lϕ) [n + (j − 1)r/s] zn, j = 1, 2 . . . , s. Notice that the

matrix G(z) has Laurent polynomials entries, and G(w) = G(e−2π iw). On the other hand, if the

functions aj(z), j = 1, 2 . . . , s, are Laurent polynomials satisfying

[a1(z), . . . , as(z)]G(z) = [1, 0, . . . , 0], (8)

then, the trigonometric polynomials aj(w) = aj(e
−2π iw), j = 1, 2, . . . , s, satisfy (3) and give recon-

struction functions Sj via formula (5).

The existence of polynomial solutions of (8) is equivalent to the existence of a left inverse of the

matrix G(z) whose entries are polynomials. This problem has been studied in [5] by Cvetković and

Vetterli in the filter banks setting. By using the Smith canonical form S(z) of the matrix G(z) (see [14]

for the details), a characterization for the existence of polynomial solutions of (8) has been found in

[12]. Namely, assuming that the generator ϕ and Lϕ have compact support, there exists a polynomial

vector [a1(z), a2(z), · · · , as(z)] satisfying (8) if and only if the polynomials ij(z), j = 1, 2, . . . , r, on
the diagonal of the Smith canonical formS(z) of thematrixG(z) aremonomials. Assume that the s× r

matrix

S(z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

i1(z) 0 · · · 0

0 i2(z) · · · 0
...

...
...

0 0 · · · ir(z)

0 0 · · · 0
...

...
...

0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

is the Smith canonical form of the matrix G(z) (note that it is the case whenever αG > 0) and

consider the unimodular matrices V(z) andW(z), of dimension s× s and r × r respectively, such that

G(z) = V(z)S(z)W(z).
Observe that if S(z) is the Smith form of the matrix G(z) then, taking into account that V(z) and

W(z) are unimodular matrices, we have

rank S(z) = rankG(z) for all z ∈ C.

Therefore, it is straightforward to deduce that the polynomial ij(z) is a monomial, for each j =
1, 2, . . . , r, if and only if rank S(z) = r for all z ∈ C \ {0}. This condition, under the above hypotheses
on ϕ and Lϕ, is equivalent to saying that

rankG(z) = r for all z ∈ C \ {0}. (10)

(See [12] for the details.) From a practical point of view, the decomposition G(z) = V(z)S(z)W(z) has
an important drawback: there is not a stable method for its computation. Nevertheless, there exists

a finite algorithm to determine S(z), and consequently, for checking condition (10): see Ref. [19]. As
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pointed out in (8), in order to obtain reconstruction functions with compact support we also need to

compute a polynomial left inverse of matrix G(z).
Another algebraic approach is the following (see, for instance, [15]): Assume that G(z) is a s × r

Laurent polynomial matrix (r < s); whenever the greatest common divisor of all minors of maximum

order r is a monomial, then its Smith canonical form S(z) has monomials in its diagonal. Without loss

of generality we can assume that the γ :=
(
s

r

)
minors of order r inG(z) are polynomials with positive

powers in z. Invoking Euclides algorithm we can obtain
(
s

r

)
polynomials, f1(z), . . . , fγ (z), such that

γ∑
n=1

fn(z)An(z) = m(z), for all z ∈ C,

where An, 1 � n � γ , are the minors of order r of G(z) andm(z) is a monomial. Denote by D′
n(z) the

adjoint matrix corresponding to the minor An and Dn(z) the matrix obtained from D′
n(z) by adding

s − r zero columns. Thus, Dn(z)G(z) = An(z)Ir , and consequently( γ∑
n=1

f ′n(z)Dn(z)

)
G(z) = Ir,

where f ′n(z) := f (z)/m(z) could be a Laurent polynomial, 1 � n � γ . From a practical point of view

the drawback here is the effective calculation of the
(
s

r

)
minors of G(z) whenever r becomes larger.

In this paper, along with finding necessary and sufficient conditions assuring compactly supported

reconstruction functions, we are also interested in obtaining these functions, and in proving the opti-

mality of their supports. Taking advantage of the special structure of the matrix G(z) we reduce our

problem to one solved byusing thematrix pencil theory. Concretely,weuse some information from the

Kronecker canonical form of a matrix pencil associated with the matrix G(z) (see [9] for the details).

The paper is organized as follows: In Section 2, a suitable choice of the sampling period T = r/s
reduces our problem to a matrix pencil problem. This matrix pencil, related to the polyphase matrix of

the filter bank given in (6), has proven to be useful in practice (see Ref. [13]). Thus, we give a necessary

and sufficient condition for the existence of compactly supported reconstruction functions which

involves the Kronecker canonical form of a singular matrix pencil. Section 3 is devoted to compute

a polynomial left inverse of the matrix G(z) in the important case where the oversampling rate is

minimum, i.e., T = r/(r + 1). Finally, we prove that the polynomial left inverse of the matrix G(z)
previously calculated leads to reconstruction functions with minimal support.

2. Reducing the polynomial matrix G(z) to a matrix pencil

The first step is to reduce our polynomial matrix G(z) to a matrix pencil in order to use the well-

established theory on matrix pencils. In so doing we need some preliminaries. Let f (z) = amz
m +

am−1z
m−1 + · · · + a1z

1 + a0 be an algebraic polynomial of order m, and let n be a positive integer.

For each j = 0, 1, . . . , n − 1 let f̂j(z) denote the sum of the monomials arz
r where r ≡ j(mod n).

Obviously, f (z) = ∑n−1
j=0 f̂j(z). The polynomial f̂j , 0 � j � n − 1, is the so-called n-harmonic of order

j of the polynomial f ; it satisfies:

f̂j(e
2π i/nz) = e2π ij/n̂fj(z) for all z ∈ C.

Assume that suppLϕ is contained in an interval [0,N], where N ∈ N. Thus, the functions gj(z) are
Laurent polynomials in the variable z. Consider

p := min

{
q ∈ N : q r

s
> 1

}
.
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It is easy to check that p = c + 1 where c denotes the quotient in the euclidean division s|r. Hence,
we can write the Laurent polynomials gi(z), j = 1, 2 . . . , s, as:

g1(z) = Lϕ(1)z + Lϕ(2)z2 + · · · + Lϕ(N − 1)zN−1

g2(z) = Lϕ

(
r

s

)
+ Lϕ

(
1 + r

s

)
z + · · · + Lϕ

(
N − 1 + r

s

)
zN−1

...

gp(z) = Lϕ

(
(p − 1)

r

s

)
+ Lϕ

(
1 + (p − 1)

r

s

)
z + · · · + Lϕ

(
N − 1 + (p − 1)

r

s

)
zN−1

(11)

gp+1(z) = Lϕ

(
p
r

s
− 1

)
z−1 + · · · + Lϕ

(
N − 2 + p

r

s

)
zN−2

...

gs(z) = Lϕ

(
(s − 1)

r

s
− r + 1

)
z−(r−1) + · · · + Lϕ

(
N − r + 2 + (s − 1)

r

s

)
zN−r+2.

The polynomial g1(z) has at most N − 1 nonzero terms; the rest of polynomials gj(z), 2 � j � s, have

at most N nonzero terms. In what follows, we use the new matrix G(z) = G(z)U(z), where

U(z) = diag
[
zr−1, (Wz)r−1, (W2z)r−1, . . . , (Wr−1z)r−1

]
.

Thus, all entries of the polynomial matrix G(z) are algebraic polynomials in z and, moreover we have

rank G(z) = rankG(z) for all z ∈ C \ {0}. We denote by g̃j(z) the algebraic polynomial zr−1gj(z),
1 � j � s.

The strategy is to reduce the polynomial matrix G(z) into another simpler one having the same

rank for all z ∈ C \ {0}.
Lemma 1. Consider the matrix Ĝ(z) = [Ĝ0(z) Ĝ2(z) . . . Ĝ(r−1)(z)], where Ĝj(z), 0 � j � (r − 1),
denotes the columnvector consisting of the r-harmonics of order j of the polynomials g̃i(z)where1 � i � s.

Then

G(z) = Ĝ(z)	r,

where 	r denotes the Fourier matrix of order r.

Proof. For each i = 1, 2, . . . , s,wehave that g̃i(z) = ∑r−1
j=0

̂̃gij(z)wherễgij(z)denotes the r-harmonic

of order j of g̃i. We can write the matrix G(z) as

G(z) = [Ĝ0(z) + Ĝ1(z) + · · · + Ĝr−1(z)

Ĝ0(z) + WĜ1(z) + · · · + Wr−1
Ĝr−1(z)

· · · · · ·
Ĝ0(z) + Wr−1

Ĝ1(z) + · · · + W(r−1)2
Ĝr−1(z)].

Hence, in matrix form we have

G(z) =
[
Ĝ0(z) Ĝ1(z) . . . Ĝr−1(z)

]
	r = Ĝ(z)	r,
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where

	r =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1

1 W W2 · · · Wr−1

1 W2 W4 · · · W2(r−1)

...
...

...
...

1 Wr−1 W2(r−1) · · · W(r−1)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is the Fourier matrix of order r. �

Observe that rank G(z) = rank Ĝ(z) for all z ∈ C \ {0}.
In what follows, we assume that suppLϕ ⊆ [0,N] and, in addition, we also assume that N � r.

In this case, having in mind the number of nonzero consecutive terms of the polynomial g̃j(z), we

conclude that the r-harmonic of order q, q = 0, 1 . . . , r − 1, of the polynomial g̃i(z), 1 � i � s, is a

monomial having the form cipz
kr+q where ciq ∈ C and k ∈ {0, 1}. This choice of r and, consequently,

of the sampling periods T = r/s, r, s ∈ N and s > r, simplifies the structure of the matrix Ĝ(z).
First, let us to give an illustrative example: Consider N = 3, r = 4 and s = 5; here T = 4/5, p = 2

and the polynomials g̃j(z), 1 ≤ j ≤ 5, read:

g̃1(z) = .z4 + .z5, g̃2(z) = .z3 + .z4 + .z5,

g̃3(z) = .z2 + .z3 + .z4, g̃4(z) = .z + .z2 + .z3,

g̃5(z) = . + .z + .z2.

Hence, the matrix Ĝ(z) reads

Ĝ(z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.z4 .z5 0 0

.z4 .z5 0 .z3

.z4 0 .z2 .z3

0 .z .z2 .z3

. .z .z2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (12)

This example shows that the 3rd and 4th columns have the form z2C and z3C′ where C, C′ ∈ C
s×1.

The first and second columns do not share this property. If we right multiply the matrix Ĝ(z) by

diag[1, z−1, z−2, z−3], we get the new matrix

G̃(z) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.z4 .z5 0 0

.z4 .z5 0 .z3

.z4 0 .z2 .z3

0 .z .z2 .z3

. .z .z2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
1

z−1

z−2

z−3

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.z4 .z4 0 0

.z4 .z4 0 .

.z4 0 . .

0 . . .

. . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Nowwe can go into the general case for thematrix Ĝ(z). Having inmind Eqs. (11) and that g̃i(z) =
zr−1gi(z) we obtain:

max
{
grad g̃j : 1 � j � s

} = (N − 1) + (r − 1) = N + r − 2 < 2r.
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Hence, the matrix Ĝ(z) has the form

Ĝ(z) =

⎡⎢⎢⎢⎣
c11z

k11r c12z
k12r+1 · · · c1rz

k1r r+(r−1)

...
...

...
...

cs1z
ks1r cs2z

ks2r+1 · · · csrz
ksr r+(r−1)

⎤⎥⎥⎥⎦ ,

where the coefficients kij ∈ {0, 1}. We can easily obtain the following result:

Lemma 2. Assume that N > 1. Then, for each 1 � j � N − 1 there exist indices i′ = i, 1 � i, i′ � s,

such that kij = ki′j . Otherwise, for each N � j � r it holds that kij = ki′j for all 1 � i, i′ � s.

Assume that N > 1 and recall that N � r. The entries of the jth column of the matrix Ĝ(z), where

N � j � r, have the form .zj−1 (. ∈ C); they could have the form .zj−1 or .zr+(j−1) whenever

1 � j � N − 1. Dividing the jth column by zj−1, obviously we obtain a matrix with the same rank

than Ĝ(z) for any z ∈ C \ {0}. Thus, we introduce the new polynomial matrix G̃(z):

G̃(z) := Ĝ(z)Q(z) = [M(z) G] ,

where G ∈ C
s×(r−N+1) denotes a scalar matrix and Q(z) := diag[1, z−1, . . . , z1−r]. Whenever

rank G < r − N + 1, we have that rank G̃(z) = rank Ĝ(z) < r for all z ∈ C \ {0} and, hence, there is

no polynomial left inverse for Ĝ(z). In the case rank G = r − N + 1, there exists an invertible matrix

R ∈ C
s×s such that

R G =
⎡⎣G′

0

⎤⎦ ,

where G′ ∈ C
(r−N+1)×(r−N+1) is invertible. Thus,

R G̃(z) = [RM(z) RG] =
⎡⎣M1(z) G′

M2(z) 0

⎤⎦ .

The entries of the polynomial matrix M(z) ∈ C
s×(N−1) are of the form .zr or constants; denoting

λ = zr , the matrices Mi(z), i = 1, 2, can be expressed as

Mi(λ) = Mi1 − λMi2,

whereM1i ∈ C
(r−N+1)×(N−1) andM2i ∈ C

(s−r+N−1)×(N−1). As a consequence, we have the following

result:

Lemma 3. Assume that rank G = r − N + 1. Then, rankG(z) = r for all z ∈ C \ {0} if and only if

rank M2(λ) = N − 1 for all λ ∈ C \ {0}.
The next step is to characterize when the rank of the matrix M21 − λM22 equals N − 1 for any

λ ∈ C \ {0}. To this end, we use the Kronecker canonical form (KCF hereafter) of the matrix pencil

M2(λ) (see [9] for the details). By using the block structure notation A ⊕ B := diag(A, B), consider
the KCF of the matrix pencil M2(λ), i.e.,

K(λ) := S
right

M2
(λ) ⊕ JM2

(λ) ⊕ NM2
(λ) ⊕ S

left

M2
(λ),
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where S
right

M2
(λ)denotes the right singularpart ofM2(λ), S

left

M2
(λ)denotes the left singularpart, JM2

(λ) is

the block associatedwith thefinite eigenvalues of the pencil and, finally,NM2
(λ) is the block associated

with the infinite eigenvalue. Having in mind the structure of the different blocks appearing in the KCF

of the matrix pencil M2(λ), we can derive that the rank of K(λ), and consequently of M2(λ), is N − 1

for all λ ∈ C \ {0} if and only if K(λ) has no right singular part and the only possibly finite eigenvalue

is the zero one. In fact, we have the following result:

Lemma 4. The rank of the matrix M2(λ) is N − 1 for each λ ∈ C \ {0} if and only if the following

conditions hold:

1. The KCF of the matrix pencil M2(λ) has no right singular part; and

2. If μ is a finite eigenvalue of the matrix pencil M2(λ), then μ = 0.

Now, Lemma 4 allows us to decide when the rank of our initial polynomial matrix G(z) is r for all
z ∈ C\{0}. Let us to remind all the given steps in reducing the initial polynomialmatrixG(z). Namely:

G(z)� G(z)� Ĝ(z)� G̃(z)�
⎡⎣M1(z) G′

M2(z) 0

⎤⎦ ,

where

1. G(z) = G(z)U(z).
2. Ĝ(z)	r = G(z).

3. G̃(z) = Ĝ(z)Q(z) = [M(z) G], where G ∈ C
s×(r−N+1) and Q(z) = diag[1, z−1, . . . , z1−r].

4. If rank G = r − N + 1, there exists R ∈ C
s×s invertible such that R G̃(z) =

⎡⎣M1(z) G′

M2(z) 0

⎤⎦where

the matrix G′ ∈ C
(r−N+1)×(r−N+1) is invertible.

5. The matrices Mi(z), i = 1, 2, can be expressed as Mi(λ) = Mi1 − λMi2 with λ = zr .

As a consequence, we have proved the following result:

Theorem 2. Assume that suppLϕ ⊆ [0,N], where N ∈ N with N > 1, and take N � r < s. Let G(z)
be the corresponding s× r polynomial matrix given in (7). Then, rankG(z) = r for any z ∈ C \ {0} if and
only if the following statements hold:

1. rank G = r − N + 1; and

2. the KCF of the matrix pencilM2(λ) has no right singular part, and the only possible finite eigenvalue

is μ = 0.

Forpractical purposes it is notnecessary to compute theKCFof thematrixpencilM2(λ) (if possible).
The needed information about M2(λ) can be retrieved from the GUPTRI (General UPper TRIangular)

form of thematrix pencil. It is worth tomention that the GUPTRI form can be stably computed [6,7,18,

20]. As the matrix G̃(z) depends on zr , in what follows we identify the matrix G̃(z) with G̃(λ) where

λ = zr .

2.1. A toy model involving the quadratic B-spline

The following example illustrates the result given in Theorem 2. Consider as generator ϕ the

quadratic B-spline N3(t), i.e.,

N3(t) = t2

2
χ[0,1)(t) +

(
−3

2
+ 3t − t2

)
χ[1,2)(t) + 1

2
(3 − t)2χ[2,3)(t),
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where χ[a,b) denotes the characteristic function of the interval [a, b). In this case, for the identity

system, Lf = f for all f ∈ Vϕ , we have suppLϕ ⊆ [0, 3], i.e., N = 3. Taking the sampling period

T = 4/5, i.e., r = 4 and s = 5, the Laurent polynomials gi(z), 1 ≤ i ≤ 5, given by (11) read:

g1(z) = 1

2
z + 1

2
z2, g2(z) = 8

25
+ 33

50
z + 1

50
z2,

g3(z) = 9

50
z−1 + 37

50
+ 2

25
z, g4(z) = 2

25
z−2 + 37

50
z−1 + 9

50
,

g5(z) = 1

50
z−3 + 33

50
z−2 + 8

25
z−1.

Following the above steps we obtain

Ĝ(z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
z4 1

2
z5 0 0

33
50

z4 1
50

z5 0 8
25

z3

2
25

z4 0 9
50

z2 37
50

z3

0 2
25

z 37
50

z2 9
50

z3

1
50

33
50

z 8
25

z2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Right multiplication by the matrix diag[1, z−1, z−2, z−3] gives:

G̃(λ) = [M(λ) | G] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
λ 1

2
λ 0 0

33
50

λ 1
50

λ 0 8
25

2
25

λ 0 9
50

37
50

0 2
25

37
50

9
50

1
50

33
50

8
25

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where λ = z4. The matrix G ∈ C
5×2 has rank 2; performing some elementary operations on the rows

of G we obtain

G′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9
50

37
50

0 8
25

0 0

0 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

37
9

− 161
18

0 1 0

16
9

− 37
9

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 8
25

9
50

37
50

37
50

9
50

8
25

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= R G.

Therefore, R G̃(λ) = [RM(λ) RG] =
⎡⎣M1(λ) G′

M2(λ) 0

⎤⎦ where

M2(λ) =

⎡⎢⎢⎢⎢⎣
1
2
λ 1

2
λ

5017
900

λ 2
25

+ 161
900

λ

1
50

+ 1157
450

λ 33
50

+ 37
450

λ

⎤⎥⎥⎥⎥⎦ .
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In this case, a direct computation gives KM2
(λ) = L�2 (λ), where

L2(λ) =
⎡⎣0 1 0

0 0 1

⎤⎦ − λ

⎡⎣1 0 0

0 1 0

⎤⎦ .

As a consequence, Theorem 2 ensures that the corresponding polynomial matrix G(z) possesses a

polynomial left inverse.

Next we deal with the problem of computing a polynomial left inverse of G(z) in the case where it

exists.

3. Computing a polynomial left inverse of the matrix G(z)

First notice that if we compute a polynomial left inverse of the matrix G̃(λ) then we obtain a

polynomial left inverse of the matrix G(z). Indeed, remind that

G̃(z) = G(z)U(z)	−1
r Q(z),

whereU(z) = diag[zr−1, (Wz)r−1, . . . , (Wr−1z)r−1],	r is the Fourier matrix of order r, and Q(z) =
diag[1, z−1, . . . , z1−r]. Thus, if L(z) is a polynomial left inverse of the matrix G̃(z), then the matrix

LG(z) = diag[zr−1, (Wz)r−1, . . . , (Wr−1z)r−1]	−1
r diag[1, z−1, . . . , z1−r]L(z)

will be a polynomial left inverse of the matrix G(z). As a consequence, we confine ourselves to the

problem of computing a polynomial left inverse of the matrix G̃(z). To this end, consider G̃(λ) =
A�−λB� (λ = zr); being L(λ)apolynomial left inverseof thematrix G̃(λ),wehave (A−λB)L�(λ) =
Ir . Let us denote L(λ) := L�(λ). As we are searching for s × r matrices L(λ), whose entries are

polynomials, such that (A − λB)L(λ) = Ir we can use the following notation:

L(λ) = [L1(λ) L2(λ) . . . Lr(λ)] , i.e., Li(λ) denotes the ith column of L(λ),

Li(λ) = �0i + �1i λ + · · · + �ν
i λ

ν, i = 1, 2, . . . , r, where �ki ∈ C
s, k = 0, 1, . . . , ν.

As a consequence, equation (A − λB)L(λ) = Ir is equivalent to

A�0i + (A�1i − B�0i )λ + · · · + (A�ν
i − B�ν−1

i )λν − B�ν
i λ

ν+1 = Iir, i = 1, 2, . . . , r, (13)

where Iir denotes the ith columnof the identitymatrix Ir . Equating coefficients, for each i = 1, 2, . . . , r,
we obtain the set of linear equations

A�0i = Iir, A�1i − B�0i = 0, . . . , A�ν
i − B�ν−1

i = 0, −B�ν
i = 0,

or in matrix form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−B
A −B

A −B
. . .

A −B
A

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
�ν
i

�ν−1
i
...

�0i

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0
...

0

Iir

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, i = 1, 2, . . . , r, (14)
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where the resulting block matrix has order (ν + 2)r × (ν + 1)s. The goal is to find ν ∈ N such that

the above r linear systems become consistent. Next, we come back to the example in Section 2.1.

The example revisited: Consider again the example involving the quadratic B-spline given in Section

2.1. In this case, G̃(z) = G(z)U(z)	−1
4 diag[1, z−1, z−2, z−3] and, taking λ = z4 we have

G̃(λ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
λ 1

2
λ 0 0

33
50

λ 1
50

λ 0 8
25

2
25

λ 0 9
50

37
50

0 2
25

37
50

9
50

1
50

33
50

8
25

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= A� − λB�,

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1
50

0 0 0 2
25

33
50

0 0 9
50

37
50

8
25

0 8
25

37
50

9
50

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
and B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
2

− 33
50

− 2
25

0 0

− 1
2

− 1
50

0 0 0

0 0 0 0 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Here, the matrix S =
[ −B

A −B
A

]
of size 12 × 10 has rank 10. Choosing the columns of L(λ) as Li(λ) =

�0i + �1i λ ∈ C
5×1, the linear systems

⎡⎢⎢⎢⎣
−B
A −B

A

⎤⎥⎥⎥⎦
⎡⎣�1i

�0i

⎤⎦ =

⎡⎢⎢⎢⎣
0

0

Ii4

⎤⎥⎥⎥⎦ , i = 1, 2, 3, 4 (15)

have a unique solution. Observe that deleting the trivial equations 3 and 4, we have consistent square

systems. By using Matlab we obtain the left inverse

L(λ) = 103

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.4812 −0.1438 0.0166 −0.0043

−3.4840 0.1118 −0.0128 0.0031

1.6069 −0.0514 0.0056 0.0000

−0.4125 0.0125 0.0000 −0.0000

0.0500 0.0000 −0.0000 0.0000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 103

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0021 0.0001 −0.0000 0.0000

0.0517 −0.0017 0.0002 −0.0000

−0.4133 0.0133 −0.0015 0.0004

1.6071 −0.0516 0.0059 −0.0015

−3.4841 0.1118 −0.0129 0.0033

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
λ.
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At this point, the challenge problem is to give conditions on thematrix pencilA� −λB� in order to

obtaina left inversewithpolynomial entries (havingnonnegativepowers)bysolving thecorresponding

linear systems (15). The answer to this question is based on the KCF of thematrix pencilA� −λB�. In

our example the correspondingKCF isN1(λ)⊕N1(λ)⊕L�2 (λ), i.e., the pencil has not finite eigenvalues,
all the blocks associated with the infinite eigenvalue have order 1, and the left singular part has a

unique block. In what follows, we prove that these conditions for the KCF of the matrix pencil G̃(λ)
are sufficient to give a positive answer to the raised problem in a very important particular case:

3.1. The case where the oversampling rate is minimum for a fixed r � N

It corresponds to the case where N � r and s = r + 1, i.e., the sampling period is T = r/(r + 1).

Here, the matrix pencil G̃(λ) = A� − λB� has the form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 0 · · · 0 0 0

0 · · · 0 0 · · · 0 0 ∗
0 · · · 0 0 · · · 0 ∗ ∗
...

...
... . . . . . .

...
...

0 · · · 0 0 ∗ · · · ∗ ∗
0 · · · 0 ∗ ∗ · · · ∗ ∗
0 · · · ∗ ∗ ∗ · · · ∗ 0

... . . .
...

...
... . . .

...

∗ · · · ∗ ∗ ∗ · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− λ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ · · · ∗ ∗ 0 · · · 0

∗ · · · ∗ ∗ 0 · · · 0

∗ . . . ∗ 0 0 · · · 0

... . . . . . .
...

...
...

∗ . . . 0 0 0 · · · 0

0 · · · 0 0 0 · · · 0

0 · · · 0 0 0 · · · 0

...
...

...
...

...

0 · · · 0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (16)

i.e., denoting the entries of A� and B� by A�
ij and B�

ij respectively, we have A�
ij = 0 if i + j < 2 + r

or i + j > r + N + 1, B�
1N = 0 and B�

ij = 0 if i + j > N + 1. Having in mind the structure of the

matricesA� and B� we have rank(A�) � r, rank(B�) � N − 1 and rank
([ −B

A −B
])
� r + N − 1.

Whenever these matrices have maximum rank, the following result holds:

Theorem 3. Assume that the singular matrix pencilA� − λB� of size (r + 1) × r satisfies the following

conditions:

1. The pencil has no finite eigenvalues,

2. rank(A�) = r,

3. rank(B�) = N − 1, with N � r, and

4. rank
([ −B

A −B
])

= r + N − 1.

Then, the Nr × (N − 1)(r + 1) matrix

Gr :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−B
A −B

A −B
. . .

A −B
A

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
has rank (N − 1)(r + 1).
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First note that rank(A�) = r implies that the KCF of the matrix pencil A� − λB� has not right

singular part (and also that 0 is not an eigenvalue). Thus, by using Theorem 2, the pencil A� − λB�
has a polynomial left inverse. Before to prove Theorem 3, and in order to ease its proof, we first obtain,

under the theorem hypotheses, the KCF of the matrix pencil A� − λB�:

Lemma 5. The KCF of the matrix pencil A� − λB� is

⎛⎝r−N+1⊕
i=1

N1(λ)

⎞⎠ ⊕ L�N−1(λ).

Proof of Lemma 5. Since the matrix pencil has neither finite eigenvalues nor a right singular part, we

conclude that its KCF has the form N(λ) ⊕ Lleft(λ), where N(λ) denotes the blocks associated with

the infinite eigenvalue and Lleft(λ) denotes the left singular part. Since r + 1 is the number of rows

of the matrix pencil, r the number of columns, and the rank of B is N − 1 it cannot appear blocks of

the form L�i (λ) for i � N. Each left singular block increases in one the number of rows with respect

to the number of columns; hence, as the size of A� − λB� is (r + 1) × r, it can appear only one

left singular block in its KCF. Furthermore, we prove that this only left singular block corresponds to

L�N−1(λ). Indeed, let K�
A − λK�

B be the KCF of the matrix pencil A� − λB�. Obviously, we have that

rank(A�) = rank(K�
A ) = r, rank(B�) = rank(K�

B ) = N − 1 and

rank

⎡⎣−B
A −B

⎤⎦ = rank

⎡⎣−KB

KA −KB

⎤⎦ = r + N − 1.

The rank of the matrix
[ −KB

KA −KB

]
coincides with its number of nonzero rows because the number of

null rows of KB is r − N + 1, i.e., the number of blocks in N(λ); the matrix KA has not null rows so

that, the number of nonzero rows of
[ −KB

KA −KB

]
is 2r − (r − N + 1) = r + N − 1.

Assume that in theKCFof thematrixpencilA�−λB� appears a singularblock L�i (λ)with i < N−1.

Since the rank of B� is N − 1, the regular part in the KCF has a block of the form Nl(λ) with l � 2. By

rearranging the blocks, we obtain that the KCF of A� − λB� is Nl(λ) ⊕ · · · ⊕ L�i (λ); therefore

⎡⎣−KB

KA −KB

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0 0 0 · · · 0 0

−1 0 · · · 0 0 0 0 · · · 0 0

∗ ∗ · · · ∗ ∗ 0 0 · · · 0 0
...

...
...

...
...

...
...

...

∗ ∗ · · · ∗ ∗ 0 0 · · · 0 0

1 0 · · · 0 0 0 0 · · · 0 0

0 1 · · · 0 0 −1 0 · · · 0 0

∗ ∗ · · · ∗ ∗ ∗ ∗ · · · ∗ ∗
...

...
...

...
...

...
...

...

∗ ∗ · · · ∗ ∗ ∗ ∗ · · · ∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In this case, the rank of
[ −KB

KA −KB

]
is strictly smaller than r + N − 1 because the second row and

the (r + 1)th row are linearly dependent. This contradicts the hypotheses and, hence, the only left

singular block is L�N−1(λ). Having in mind that rank(B�) = N − 1, we conclude that the KCF of the

matrix pencil A� − λB� is

⎛⎝r−N+1⊕
i=1

N1(λ)

⎞⎠ ⊕ L�N−1(λ). �
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Proof of Theorem 3. Once we have determined the KCF of the matrix pencil A� − λB� we compute

the rank of the matrix Gr . If KA − λKB is the KCF of the matrix pencil A − λB, it is obvious that

rank(Gr) = rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−KB

KA −KB

KA −KB
. . .

KA −KB

KA

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

As K�
A − λK�

B is the KCF of the matrix pencil A� − λB�, Lemma 5 gives

K�
A =

⎡⎣ I 0

0 L�A

⎤⎦ , K�
B =

⎡⎣0 0

0 L�B

⎤⎦ ,

where I = I(r−N+1) denotes the identity matrix of order r − N + 1, and

L�A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0

1 0 · · · 0
...

. . . . . .
...

0 0 · · · 0

0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ C

N×(N−1); L�B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0

0 1 · · · 0
...

. . . . . .
...

0 0 · · · 1

0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ C

N×(N−1).

As a consequence,

rank(Gr) = rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 −LB

I 0 0 0

0 LA 0 −LB

I 0 0 0

0 LA 0 −LB
. . . . . .

I 0 0 0

0 LA 0 −LB

I 0

0 LA

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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A suitable interchange of rows and columns gives

rank(Gr) = rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 0 0

I

. . .

I

−LB 0

LA −LB
. . .

LA −LB

0 LA

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the first r − N + 1 = r − rank(KB) are null rows; hence, the rank of Gr equals (N − 1)(r + 1)
if and only if the remaining (N − 1)(r + 1) rows are linearly independent. This is equivalent to the

matrix

LA,B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−LB 0

LA −LB
. . .

LA −LB

0 LA

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ C

N(N−1)×N(N−1)

has full rank. To prove it, we use the following result in [9, p. 32]: Let x(λ) be a nonzero vector having

the form

x(λ) = x0 + λx1 + λ2x2 + · · · + λεxε, xi ∈ C
N×1

such that (LA − λLB)x(λ) = 0. Then, necessarily, ε � N − 1. Now, let us continue by contradiction,

and assume that the matrix LA,B has not full rank. Then, there exists a nonzero vector z ∈ C
N(N−1)×1

such that LA,B z = 0. Denoting z� = [z�N−2 . . . z�1 z�0 ] where zi ∈ C
N×1, we obtain that

(LA − λLB)(z0 + λz1 + λz2 + · · · + λN−2zN−2) = 0,

which contradicts theminimal property forN−1. Therefore, thematrixLA,B has full rank and, finally,

rankGr = (N − 1)(r + 1). �

Remark.Notice that Theorem3remains valid for any singularmatrixpencilA�−λB� of size (r+1)×r

substituting N − 1 by p ∈ N which satisfies 0 < p < r.

Consider the matrix pencil G̃(λ) = A� − λB� of size (r + 1) × r with N � r. Assuming that

the G̃(λ) has polynomial left inverses, the following result gives sufficient conditions for computing

one of such polynomial left inverses. Once we have got one solution, it is straightforward to derive the

remaining solutions.

Corollary 1 (Computing a polynomial left inverse of G̃(λ)). Let G̃(λ) = A� − λB� be a singular

matrix pencil of size (r + 1) × r with N � r. Assume that G̃(λ) admits polynomial left inverses, and that

the following conditions hold:
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1. rank(A�) = r,

2. rank(B�) = N − 1, and

3. rank
([ −B

A −B
])

= r + N − 1.

Consider the Nr × (N − 1)(r + 1) matrix Gr in Theorem 3. Then, the linear systems

Gr

⎡⎢⎢⎢⎢⎢⎢⎣
�N−2
i

�N−3
i
...

�0i

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0
...

0

Iir

⎤⎥⎥⎥⎥⎥⎥⎦ , i = 1, 2, . . . , r, (17)

where Iir denotes the ith column of the identity matrix Ir , admit a unique solution. Moreover, let

[�N−2
i �N−3

i . . . �0i ]� ∈ C
(N−1)(r+1) be this solution for i = 1, 2, . . . , r, and consider the polyno-

mial vector Li(λ) = �0i + �1i λ + · · · + �N−2
i λN−2, i = 1, 2, . . . , r. Then, the (r + 1) × r polynomial

matrix

L(λ) := [L1(λ) L2(λ) . . . Lr(λ)]

satisfies

L�(λ)G̃(λ) = Ir .

Proof. Theorem3 implies that the rank of the coefficientmatrixGr ∈ C
Nr×(N−1)(r+1) is (N−1)(r+1)

in (17). Having in mind (16), the last r − N + 1 rows of B are null. Deleting these rows in the first row

block (whichbecome trivial equations in (17)),weobtain an square invertiblematrix, and consequently

(17) has a unique solution for each i = 1, 2, . . . , r. Recalling (14), we finally obtain that L�(λ) is a

polynomial left inverse of G̃(λ). �

Observe that any other polynomial left inverse A(λ) of the matrix G̃(λ) is given by

A(λ) = L�(λ) + B(λ)
[
Ir+1 − G̃(λ)L�(λ)

]
,

where B(λ) is an arbitrary r × (r + 1) polynomial matrix.

For the matrix pencil G̃(λ) = A� −λB� of size (r + 1)× r with N � r, it is easy to give sufficient

conditions in order to satisfy the conditions 1–3 in Corollary 1. Namely:

Corollary 2. Consider the singular matrix pencil G̃(λ) = A� − λB� of size (r + 1) × r with N � r.

Denoting A� = [A�
ij ] and B� = [B�

ij ], assume that the following conditions hold:

A�
ij = 0 if i + j = r + 2 or i + j = r + N + 1, (18)

B�
ij = 0 if i + j = N + 1 and i � 2. (19)

Then the conditions 1–3 in Corollary 1 are satisfied.



2854 A.G. García et al. / Linear Algebra and its Applications 435 (2011) 2837–2859

Proof. Conditions (18) and (19) say that the entries marked as • in the matrices below are nonzero

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . . . . . 0 0 · · · · · · 0 · · · 0 •
0 . . . . . . . 0 0 · · · · · · 0 · · · • ∗
...

...
...

...
... . . .

...
...

...
...

...
... . . .

...
...

...
...

... . . .
...

...
...

0 . . . . . . . 0 0 • · · · ∗ · · · ∗ ∗
0 . . . . . . . 0 • ∗ · · · ∗ · · · ∗ ∗
0 . . . . . 0 • ∗ ∗ · · · ∗ · · · ∗ •
0 . . . . . • ∗ ∗ ∗ · · · ∗ · · · • 0

... . . .
...

... . . .
...

0 • · · · ∗ ∗ ∗ · · · · · · • · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡⎣A11 A12

A21 A22

⎤⎦ ∈ C
r×(r+1),

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ · · · ∗ • 0 · · · 0

∗ ∗ · · · • 0 0 · · · 0

...
... . . .

...
...

...
...

∗ • · · · 0 0 0 · · · 0

0 0 · · · 0 0 0 · · · 0

...
...

...
...

...
...

0 0 · · · 0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎣B11 0

0 0

⎤⎦ ∈ C
r×(r+1),

whereA22 ∈ C
(r−N+1)×(r−N+1) and B11 ∈ C

(N−1)×N . Trivially, rank(A�) = r and rank(B�) = N−1.

Condition 3 comes by observing the form of the matrix
[ −B

A −B
]
. Interchanging rows and columns

we obtain that the matrix
[ −B

A −B
]
has the same rank than the matrix

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0

B11 0 0 0

A11 B11 A12 0

A21 0 A22 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

Since the matrix A22 ∈ C
(r−N+1)×(r−N+1) is invertible, elementary row operations give the new

matrix

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0

B11 0 0 0

Ã11 B11 0 0

A21 0 A22 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

Finally, the above matrix has rank 2(N − 1) + r − N + 1 = r + N − 1. �
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Remark that this condition can be checked by using the algorithm guptri. In case that conditions

1–3 in Corollary 1 are satisfied, we could check directly the consistency of the linear systems (17); if

they are not consistent, we derive that the pencil G̃(λ) has not polynomial left inverses.

In Corollary 2 we allow the first column of B to be a zero column. Nevertheless, for the condition 1

in Theorem 3 to be satisfied, the first column of B should have at least one nonzero element.

Corollary 1 provides amethod to obtain an algebraicmatrix polynomial of degree ν = N−2which

is a left inverse of G̃(λ). In the next section we prove that all terms in this polynomial matrix are

nonzero. The number of nonzero terms in a left inverse of G̃(λ) and the support of the reconstruction

functions are intimately related (see (5)): More zero terms implies a smaller support. Below we prove

that the mentioned solution is optimal in the sense that every solution of the problem has, at least,

N − 1 nonzero terms.

3.2. Optimality of the solution

In the previous section we have found an algebraic polynomial matrix, L(λ) ∈ C
(r+1)×r , which is

a left inverse of G̃(λ). This algebraic polynomial matrix can be written as:

L(λ) = L0 + L1λ + · · · + LN−2λ
N−2,

where Li = [�i1 . . . �ir] ∈ C
(r+1)×r and �ij ∈ C

(r+1)×1. Hence, each column of L(λ), Lj(λ), can be

written as Lj(λ) = �0j + �1j λ + · · · + �N−2
j λN−2.

Theoptimalityprobleminvolvesfindinga left inversepolynomialmatrixof G̃(λ)with theminimum

number of nonzero terms. Let p ∈ Z denotes the smallest power of λ in the polynomial matrix L(λ)
we are looking for. If L(λ) = Lpλ

p + Lp+1λ
p+1 + · · · + Lp+νλ

p+ν , then each column of L(λ) can be

written as:

Lj(λ) = �
p
j λ

p + �
p+1
j λp+1 + · · · + �

p+ν
j λp+ν =

ν∑
k=0

�
p+k
j λp+k.

As a consequence, equation (A − λB)L(λ) = Ir is equivalent to

A�
p
j λ

p +
ν∑

k=1

(
A�

p+k
j − B�

p+k−1
j

)
λp+k − B�

p+ν
j λp+ν+1 = Ijr, (20)

for j = 1, 2, . . . , r, where I
j
r denotes the j-th column of Ir , the identity matrix of order r.

Notice that the left-hand sideof (20) shouldhavea constant termbecause the right one is a constant.

As a consequence, 0 ≤ −p ≤ ν+1.Moreover, since the last r−N+1 rows ofB are null, if−p = ν+1,

the equationB�
p+ν+1
j = I

j
r has no solution for j = N,N+1, . . . , r−1, r; consequently, 0 ≤ −p ≤ ν .

Therefore, (20) is equivalent to the recursive scheme:

A�
p
j = I j

p

A�
p+1
j = B�

p
j +I j

p+1
...

...
...

A�
p+k
j = B�

p+k−1
j +I j

p+k
...

...
...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (21)

until k = ν , together with the equation:

B�
p+ν
j = 0, (22)

where I j
p+k = δ−p,kI

j
r for k ≥ 0 and δ−p,k is the Kronecker delta.
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Inwhat follows, we assume that G̃(λ) admits a polynomial left inverse and that thematricesA and

B verifies the hypotheses in Corollary 2. Recall that under these hypotheses, in Section 3 a solution of

(20) has been obtained for p = 0 and ν = N − 2.

Next step is to prove that whenever 0 ≤ −p ≤ ν < N − 2 the system (21) and (22) has not a

solution. Consequently, the matrix G̃(λ) does not admit a polynomial left inverse.

3.2.1. Case ν < N − 2

Since we are assuming the hypotheses in Corollary 2 we can write A = [0 A] and B = [b B],
where 0, b ∈ C

r×1, A, B ∈ C
r×r and A is regular. The next result gives us the structure of the sequence

{�p+k
j }∞k=0 which solves the recursive scheme (21).

Theorem 4. The solutions of (21) are of the form:

�
p+k
j =

⎡⎢⎢⎢⎣
�
p+k
j,1

�
p+k
j,2

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
�
p+k
j,1

M[k] [�p+k−1
j,1 , �

p+k−2
j,1 , . . . , �

p
j,1

]� +
k∑

i=0

(A−1B)iA−1I j
p+k−i

⎤⎥⎥⎥⎥⎥⎦ , (23)

where �
p+k
j,1 ∈ C, �

p+k
j,2 ∈ C

r×1, M[0] = 0 and M[k] ∈ C
r×k for k ∈ N ∪ {0}. Moreover, the matrices

M[k] ∈ C
r×k does not depend on j ∈ {1, 2 . . . , r}.

Proof. Weproceed by induction on k. For k = 0, we have to solveA�
p
j = I j

p. Therefore, [0 A]
[

�
p
j,1

�
p
j,2

]
=

A�
p
j,2, and consequently �

p
j,2 = M[0] + A−1I j

p.

Suppose that (23) holds for k ∈ N ∪ {0} and consider the equation A�
p+k+1
j = B�

p+k
j + I j

p+k+1,

or equivalently,

[0 A]
⎡⎣�

p+k+1
j,1

�
p+k+1
j,2

⎤⎦ = [b B]
⎡⎣�

p+k
j,1

�
p+k
j,2

⎤⎦ + I j
p+k+1.

Hence, �
p+k+1
j,2 = A−1b�

p+k
j,1 + A−1B�

p+k
j,2 + A−1I j

p+k+1. By using the induction hypothesis we obtain:

�
p+k+1
j,2 = A−1b�

p+k
j,1 + A−1BM[k] [�p+k−1

j,1 , �
p+k−2
j,1 , . . . , �

p
j,1,

]�
+ A−1B

k∑
i=0

(A−1B)iA−1I j
p+k−i + A−1I j

p+k+1

= M[k+1] (�p+k
j,1 , �

p+k−1
j,1 , . . . , �

p
j,1,

)� +
k+1∑
i=0

(A−1B)iA−1I j

p+(k+1)−i.

Notice that matrices M[k] depend on A and B and are independent of j. �

By using Theorem 4 and that there is only one nonzero I j
p+i, say I j

p+i0
= I

j
r , we have that

�
p+ν
j =

⎡⎣�
p+ν
j,1

�
p+ν
j,2

⎤⎦ =
⎡⎣ �1p+ν

M[ν] [�p+ν−1
j,1 , �

p+ν−2
j,1 , . . . , �

p
j,1

]� + (A−1B)ν−i0A−1I
j
r

⎤⎦
for 1 ≤ j ≤ r. Moreover, �

p+ν
j has to verify B�

p+ν
j = 0. Equivalently,
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[b B]
⎡⎣�

p+ν
j,1

�
p+ν
j,2

⎤⎦ = b�1p+ν + BM[ν] [�p+ν−1
j,1 , �

p+ν−2
j,1 , . . . , �

p
j,1

]� + B(A−1B)ν−i0A−1Ijr

= M[ν+1] [�p+ν
j,1 , �

p+ν−1
j,1 , . . . , �

p
j,1

]� + (BA−1)ν−i0+1Ijr = 0, (24)

which is a linear system with r equations and ν + 1 unknowns, �
p+ν
j,1 , �

p+ν−1
j,1 , . . . , �

p
j,1, for each

j = 1, 2, . . . , r.
To deal with the system (24) we have to calculate the rank of (BA−1)k for k ∈ N ∪ {0}:

Lemma 6. For all k ∈ N ∪ {0}, the rank of (BA−1)k is N − 1.

Proof. Denote

A =
⎡⎣A11 A12

A21 A22

⎤⎦ ; A−1 =
⎡⎣V11 V12

V21 V22

⎤⎦ ; B =
⎡⎣B11 0

0 0

⎤⎦ ,

where A11, V11, B11 ∈ C
(N−1)×(N−1) and A22, V22 ∈ C

(r−N+1)×(r−N+1). Then, since AA−1 = Ir we

obtain:

A11V11 + A12V21 = IN−1, (25)

A21V11 + A22V21 = 0. (26)

From (18), we know that A22 is a regular matrix, so V21 = −A
−1
22 A21V11 and, substituting in (26),

we obtain that

A11V11 − A12A
−1
22 A21V11 = (A11 − A12A

−1
22 A21)V11 = IN−1.

Thus, V11 is a regular matrix. On the other hand, BA−1 =
[
B11V11 B11V12

0 0

]
. It is a straightforward calcu-

lation to prove that

(BA−1)k =
⎡⎣(B11V11)

k (B11V11)
k−1B11V12

0 0

⎤⎦
and, since by (19) B11 is regular, we have that rank(BA−1)k = N − 1. �

The system

M[ν+1] [�p+ν
j,1 , �

p+ν−1
j,1 , . . . , �

p
j,1

]� = −(BA−1)ν−i0+1Ijr, j = 1, 2, . . . , r (27)

is compatible for all j = 1, 2, . . . , r if and only if rank[M[ν+1] | (BA−1)ν−i0+1] = rankM[ν+1]. Since
rank(BA−1)ν−i0+1 is N − 1 and M[ν+1] ∈ C

r×(ν+1) depends only on A and B we deduce that (27) is

compatible if ν + 1 ≥ N − 1. The following results holds:

Theorem 5. If ν < N − 2 there is not a (r + 1) × r polynomial matrix L(λ) = Lpλ
p + Lp+1λ

p+1 +
· · · + Lp+νλ

p+ν satisfying Eq. (20).

3.2.2. Case ν ≥ N − 2

Theorem 3 in Section 3 ensures that (20) has a unique solution for ν = N − 2. However, when

ν > N − 2 there are infinitely many polynomial matrices L(λ) satisfying Eq. (20). Having in mind the

matrix Gr in Theorem 3, we introduce the new matrices Gr(k) ∈ C
(k+2)r×(k+1)(r+1), k ∈ N ∪ {0},
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defined recursively as:

Gr(0) =
⎡⎣−B

A

⎤⎦ , Gr(1) =

⎡⎢⎢⎢⎣
−B 0

A −B
0 A

⎤⎥⎥⎥⎦ , . . . , Gr(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Gr(k − 1)

0
...

0

−B
0 · · · 0 A

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Since B has r − N + 1 null rows, Gr(k) has (kr + r) + N − 1 nonzero rows. So we have that

rankGr(k) ≤ min {(kr + r) + N − 1, (kr + r) + k + 1}. It is straightforward to prove that previous

inequality is, indeed, an equality. Hence, since we are assuming the hypotheses in Corollary 2, if ν ≥
N − 2, then the rank of Gr(ν) is the number of its nonzero rows, i.e., rank Gr(k) = (k + 1)r + N − 1.

Thus, for ν ≥ N − 2 the system (21)–(22) is compatible for every j = 1, 2, . . . , r.
LetL(λ) = Lpλ

p+Lp+1λ
p+1+· · ·+Lp+νλ

p+ν a solutionof (20).Whateverν ≥ N−2, thenumber

of nonzero terms ofL(λ) is greater or equal thanN−1. On the contrary, let us suppose that the number

of nonzero terms of L(λ) is less than N − 1. In this case, let u = min{m ≥ 0 : Lm+1 = 0} and v =
max{m � 0 : Lm−1 = 0}. It is easy to check that the polynomial matrixLvλ

v +· · ·+L0 +· · ·+Luλ
u

is a solution of (20) whose terms are all nonzero (L0 = 0 because L(λ) is a solution of (20)). But this

leads to a contradiction with Theorem 5. Therefore, the following result holds:

Theorem 6. Assume ν ≥ N − 2 and let L(λ) = Lpλ
p + Lp+1λ

p+1 + · · · + Lp+νλ
p+ν a solution of Eq.

(20). The number of nonzero terms of L(λ) is at least N − 1.
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