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The aim of this work is to solve a question raised for average sampling
in shift-invariant spaces by using the well-known matrix pencil the-
ory. In many common situations in sampling theory, the available
data are samples of some convolution operator acting on the func-
tion itself: this leads to the problem of average sampling, also known
as generalized sampling. In this paper we deal with the existence of
a sampling formula involving these samples and having reconstruc-
tion functions with compact support. Thus, low computational com-
plexity is involved and truncation errors are avoided. In practice, it is
accomplished by means of a FIR filter bank. An answer is given in the
light of the generalized sampling theory by using the oversampling
technique: more samples than strictly necessary are used. The origi-
nal problem reduces to finding a polynomial left inverse of a polyno-
mial matrix intimately related to the sampling problem which, for
a suitable choice of the sampling period, becomes a matrix pencil.
This matrix pencil approach allows us to obtain a practical method
for computing the compactly supported reconstruction functions for
the important case where the oversampling rate is minimum. More-
over, the optimality of the obtained solution is established.
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1. Statement of the problem

Let V,, be a shift-invariant space in L?(R) with stable generator ¢ € L*(R), i.e.,

Vo= 1f() = D ano(t —n) : {an} € 2(2)} C I*(R),

nez

where the sequence {¢(- — n)},ez is a Riesz basis for V,,. A Riesz basis in a separable Hilbert space is
the image of an orthonormal basis by means of a bounded invertible operator (see [4]).

Nowadays, sampling theory in shift-invariant spaces is a very active research topic (see, for instance,
[1-3,8] and the references therein) since an appropriate choice for the generator ¢ (for instance, a B-
spline) eliminates some of the problems associated with the classical Shannon’s sampling theory [17].
On the other hand, in many common situations the available data are samples of some filtered version
f * h of the signal f itself. Suppose that a linear time-invariant system £ of one of the following types
(or a linear combination of both) is defined on V,:

(a) The impulse response h of £ belongs to L' (R) N L?(R). Thus, for any f € V, we have

o0
&N © = [F+hl© = [~ FhE—dx, teR.
—00
(b) £ involves samples of the function itself, i.e., (£f)(t) = f(t+d),t € R, for some constantd € R.

Under suitable conditions, Unser and Aldroubi [16] have derived sampling formulas allowing the re-
covering of any function f € V,, from the sequence of samples {(£f) (n)}ncz. Concretely, they proved
that for any f € V,

f@©) =D £f(mSc(t —n), teR, (1)

nez

where the sequence {S;(t — n)},ez is a Riesz basis for V,,. Notice that a reconstruction function S,
with compact support implies low computational complexity and avoids truncation errors. Even when
the generator ¢ has compact support, rarely the same occurs with the reconstruction function S, in
formula(1). Away to overcome this difficulty is to use the oversampling technique, i.e., for fixed positive
integers s > r, consider the sampling period T := r/s < 1. The goal is to recover any function f € V,
by using a sampling expansion involving the samples {(£f)(n/s)},cz. This can be done in the light
of the generalized sampling theory developed in [10]. Indeed, since the sampling points rn/s, n € Z,
can be expressed as {rn/s},cz = {rm + (j — 1)r/skpez, j=1,2,.. s the initial problem is equivalent to
the recovery of f € V,, from the sequence of samples {Z;f () }nez, j=1,2,...,s» where the linear time-
invariant systems £;,j = 1, 2, ..., s, are given in terms of £ by: (£;f)(t) := (£f) [t + G — Dr/s],

t € R. Following the notation introduced in [10], consider the functions g; € L2(O, 1),j=1,2,...,s,
defined as:
gw) =D (Lp) In+ G — Dr/sle ™™ = 3" (o) (m)e "™, (2)
nez nez

the s x r matrix of functions G(w) given by:

gw) giw+ 1) - gw+ =)
4+ Ly 4 =1 k—1
gz(:W) gz(W: ) & (w | )| _ [gj (w+ 3 )]

G(w) =

j=1 .
k=1,2,...,

gw) gw+ 1) o g(w+ =1
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and its related constants

ag := essinf Amin[G*(W)GW)], g := esssup Amax[G" (W)GW)],
we(0,1/r) we(0,1/r)

where G*(w) denotes the transpose conjugate of the matrix G(w), and Anin and Amay denote, respec-
tively, the smallest and the largest eigenvalue of the positive semidefinite matrix G* (w)G(w). Notice
that in the definition of the matrix G(w) we are considering the 1-periodic extensions of the involved
functions g, j = 1, 2, ..., s. Thus, the generalized sampling theory in [10] can be summarized as:

Theorem 1. Assume that the functions gj, j = 1,2, ...,s, defined in (2) belong to L°°(0, 1) (this is
equivalent to ¢ < 00). Then the following statements are equivalent:

(i) ag > 0.
(ii) There exist functions a; in L°°(0, 1),j =1, 2, ..., s, such that
[ar(w), ..., a;(w)] G(w) =[1,0,...,0] ae.in(0,1). (3)
(iii) There exists a frame for V,, having the form {S;(- — rn)}nez j=1,2,...,s Such that, for any f € V,, we
have
S
fO =22 2&H 0 S; (€ —m) in *(R). 4)
neZ j=1
In case the equivalent conditions are satisfied, the reconstruction functions S, j = 1,2, ...,s,in(4) are
given by:
Si(t) =1 > (g, e_zmnwhz(o,])(/’(f —n), (5)
nez
where the functions a;,j = 1, 2, . .., s, satisfy (3). The convergence of the series in (4) is also absolute and

uniform on R.

For the details on the frame theory see the superb monograph [4] and the references therein.
Observing (5), in case the generator ¢ is compactly supported, we have reconstruction functions S; of
compact support whenever the functions g; in (3) are trigonometric polynomials. Notice that compactly
supported reconstruction functions S;, j = 1,2,...,s, in formula (4) involve low computational
complexity and it avoids truncation errors. On the other hand, a sampling formula as those in (4)
can be seen as a filter bank, where G(w) is its modulation matrix. Indeed, denoting the reconstruction
function in (5) as Sj(t) = 2 ez di(mMe(t —n),j =1,2,...,s,forany f(t) = > ez tm @(t — m) in
V,, one can easily deduce that

m = > (L) (m)dj(m —m), m e Z. (6)

Jj=1nez

As a consequence, compactly supported reconstruction functions S; entail a FIR (finite impulse re-
sponse, i.e., only a finite number of coefficients d;(n) are nonzero) filter bank.

It is worth to mention that whenever the 1-periodic functions g, j = 1, 2, ..., s, are continuous
on R, the conditions in Theorem 1 are also equivalent to the condition recently introduced in [11,
Corollary 1]: (iv) rankG(w) =r forallw € R.

In order to find reconstruction functions S;,j = 1, 2, ..., s, in formula (4) having compact support
we assume in what follows that the generator ¢ and L¢ are compactly supported. We introduce the
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s X r matrix

g1(2) g1(Wz) -+ g1(W'z)
G2) = gz.(Z) gz(YVZ) gz(W.r_lZ)
gs(2) gs(Wz) -+ gs(W''2)

where W := e 2"/" and gi(2) = Xpez(Le)[n+ (— 1)r/s]z" j = 1,2...,s. Notice that the

matrix G(z) has Laurent polynomials entries, and G(w) = G(e~2"™). On the other hand, if the
functions aj(z),j = 1, 2..., s, are Laurent polynomials satisfying

[a1(2), ..., as(2)]G(2) = [1,0,...,0], (8)
then, the trigonometric polynomials aj(w) = aj(e_z’”""),j =1,2,...,s,satisfy (3) and give recon-

struction functions S; via formula (5).

The existence of polynomial solutions of (8) is equivalent to the existence of a left inverse of the
matrix G(z) whose entries are polynomials. This problem has been studied in [5] by Cvetkovi¢ and
Vetterli in the filter banks setting. By using the Smith canonical form S(z) of the matrix G(z) (see [14]
for the details), a characterization for the existence of polynomial solutions of (8) has been found in
[12]. Namely, assuming that the generator ¢ and L¢ have compact support, there exists a polynomial
vector [a1(2), a2(2), - - - , as(2z)] satisfying (8) if and only if the polynomials ij(z),j = 1,2, ...,r,0n
the diagonal of the Smith canonical form S(z) of the matrix G(z) are monomials. Assume that the s x r
matrix

i) 0 - 0
0 irz) -~ 0
S@)=| 0 0 - (2 (9)
0 --- 0
L O 0 0 ]

is the Smith canonical form of the matrix G(z) (note that it is the case whenever o > 0) and
consider the unimodular matrices V(z) and W(z), of dimension s x s and r x r respectively, such that
G(2) = V(2)S(2)W(2).

Observe that if S(z) is the Smith form of the matrix G(z) then, taking into account that V(z) and
W(z) are unimodular matrices, we have

rank S(z) = rank G(z) forall z € C.

Therefore, it is straightforward to deduce that the polynomial ij(z) is a monomial, for each j =
1,2,...,rifand only ifrank S(z) = rforallz € C\ {0}. This condition, under the above hypotheses
on ¢ and L, is equivalent to saying that

rank G(z) = r forall z € C\ {0}. (10)

(See [12] for the details.) From a practical point of view, the decomposition G(z) = V(z)S(z)W(z) has
an important drawback: there is not a stable method for its computation. Nevertheless, there exists
a finite algorithm to determine S(z), and consequently, for checking condition (10): see Ref. [19]. As
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pointed out in (8), in order to obtain reconstruction functions with compact support we also need to
compute a polynomial left inverse of matrix G(z).

Another algebraic approach is the following (see, for instance, [15]): Assume that G(z) isas x r
Laurent polynomial matrix (r < s); whenever the greatest common divisor of all minors of maximum
order r is a monomial, then its Smith canonical form S(z) has monomials in its diagonal. Without loss

of generality we can assume that the y := (i) minors of order r in G(z) are polynomials with positive

powers in z. Invoking Euclides algorithm we can obtain (i) polynomials, f(2), .. ., f, (2), such that

%
an(Z)An(z) =m(z), forallz € C,

n=1

where Ay, 1 < n < y, are the minors of order r of G(z) and m(z) is a monomial. Denote by D}, (z) the
adjoint matrix corresponding to the minor A, and D, (z) the matrix obtained from Dj,(z) by adding
s — r zero columns. Thus, D, (z) G(z) = A, (2)];, and consequently

14
(Zf,;(z)Dn(Z)> G =1,

n=1

where f/(z) := f(z)/m(z) could be a Laurent polynomial, 1 < n < y. From a practical point of view
the drawback here is the effective calculation of the (:) minors of G(z) whenever r becomes larger.

In this paper, along with finding necessary and sufficient conditions assuring compactly supported
reconstruction functions, we are also interested in obtaining these functions, and in proving the opti-
mality of their supports. Taking advantage of the special structure of the matrix G(z) we reduce our
problem to one solved by using the matrix pencil theory. Concretely, we use some information from the
Kronecker canonical form of a matrix pencil associated with the matrix G(z) (see [9] for the details).

The paper is organized as follows: In Section 2, a suitable choice of the sampling period T = /s
reduces our problem to a matrix pencil problem. This matrix pencil, related to the polyphase matrix of
the filter bank given in (6), has proven to be useful in practice (see Ref. [13]). Thus, we give a necessary
and sufficient condition for the existence of compactly supported reconstruction functions which
involves the Kronecker canonical form of a singular matrix pencil. Section 3 is devoted to compute
a polynomial left inverse of the matrix G(z) in the important case where the oversampling rate is
minimum, i.e, T = r/(r 4+ 1). Finally, we prove that the polynomial left inverse of the matrix G(z)
previously calculated leads to reconstruction functions with minimal support.

2. Reducing the polynomial matrix G(z) to a matrix pencil

The first step is to reduce our polynomial matrix G(z) to a matrix pencil in order to use the well-
established theory on matrix pencils. In so doing we need some preliminaries. Let f(z) = a,z™ +
n_1Z2""1 4+ - 4+ a;2' + ag be an algebraic polynomial of order m, and let n be a positive integer.
Foreachj = 0,1,...,n — 1 let fj(z) denote the sum of the monomials a,z" where r = j(mod n).

Obviously, f(z) = Z}ﬁ}fj(z). The polynomialﬁ, 0 <j < n — 1,is the so-called n-harmonic of order

j of the polynomial f; it satisfies:
fj(ez’”/”z) = eZ”U/”Tj(z) forallz € C.

Assume that supp Lg is contained in an interval [0, N], where N € N. Thus, the functions g;(z) are
Laurent polynomials in the variable z. Consider

r
p::min{qu:q7>1 .
s
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It is easy to check that p = ¢ + 1 where ¢ denotes the quotient in the euclidean division s|r. Hence,
we can write the Laurent polynomials g;(z),j = 1,2...,5s,as:

g1(2) = Loz + Lp(2)Z* + - - + Lo(N — 1)ZV !
gz@)==£¢(£)4—£¢(14—£)Z+”._+L¢(N__1_FE)ZN—l
gp(Z)=£¢((P—1)£)+£(p(l+(p—1)£)z+...+£¢(N_1+(p_1)£)ZN—1

(11)
gp+1(2) = Loy (pg - l)z—l +d Lo (N_2+p£)ZN—2

g:(2) = Lo ((s— e —r+1)z*<r*” 4o+ Lo (N— P24 (s — 1)f)zN*’+2.
N N

The polynomial g (z) has at most N — 1 nonzero terms; the rest of polynomials g;(z), 2 < j < s, have
at most N nonzero terms. In what follows, we use the new matrix G(z) = G(z)U(z), where

U(z) = diag [zf—l, wz) ', (w2 (WT‘&)H} .

Thus, all entries of the polynomial matrix G(z) are algebraic polynomials in z and, moreover we have
rank G(z) = rank G(z) forallz € C \ {0}. We denote by g;(z) the algebraic polynomial z'~!g;(z),
1<j<s.

The strategy is to reduce the polynomial matrix G(z) into another simpler one having the same
rank forallz € C \ {0}.

Lemma 1. Consider the matrix @(z) = [@o(z) @2 @) ... @(r_l)(z)], where @j(z), 0<j<(r—1,

denotes the column vector consisting of the r-harmonics of order j of the polynomials g;(z) where 1 < i < s.
Then

G@) =G,
where 2, denotes the Fourier matrix of order r.

Proof. Foreachi =1, 2, ..., s,wehavethatg;(z) = Z};(} EU (2) whereglj (z) denotes the r-harmonic
of order j of g;. We can write the matrix G(z) as

G@ =[Go@ +Gi1@ + -+ Gr1(2)
Go@) +WGi1(2) +--- + WIG—1(2)

Co@ +W'Gi1@ + - + WG, 2]
Hence, in matrix form we have

6@ = [Go@ G1@) ...Gr1@] 2 =GO,
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where
11 1 o 1]
1 W w2 ... owr!
Q=1 w> w* ... w2D

1 erl W2(r71) W(r71)2

is the Fourier matrix of order r. [J

Observe that rank G(z) = rank G(z) forallz € C \ {0}.

In what follows, we assume that supp £L¢ < [0, N] and, in addition, we also assume that N < r.
In this case, having in mind the number of nonzero consecutive terms of the polynomial g;(z), we
conclude that the r-harmonic of order ¢,q = 0,1...,r — 1, of the polynomial gi(z),1 < i < s,isa
monomial having the form cipz"’+q where cj; € C and k € {0, 1}. This choice of r and, consequently,

of the sampling periods T = r/s,r,s € Nand s > r, simplifies the structure of the matrix @(z).
First, let us to give an illustrative example: Consider N = 3,r = 4ands = 5; hereT = 4/5,p = 2
and the polynomials gj(z), 1 <j < 5, read:

g1(2) = *z* + %2, g2(2) = *Z° + %zt + %2°,
g3(2) = *Z° + *Z° + %z, g4(2) = %z + *22 + %22,
85(2) = * + %z + *Zz°.

Hence, the matrix @(z) reads

[%z* %z 0 0 ]
*z* %2> 0 %23
G@) = |xz* 0 *22 %2 |. (12)
0 %z xz> %7
| * *z *xz2 0 |

This example shows that the 3rd and 4th columns have the form 72C and z3C’ where C, C’/ € Cs>1,
The first and second columns do not share this property. If we right multiply the matrix G(z) by
diag[1,z7", 272, z73], we get the new matrix

[%z* %2> 0 0 | [%z* *z* 0 0]

*z' x> 0 *Z3 ! » *z* *z* 0 %

G@) :=|*z* 0 *z* %23 ‘ 5 =%z 0 * %
0 *z *z2 xZ° ‘ L 0 * * %

| *x kz %z 0 | ‘ | * % % 0

Now we can go into the general case for the matrix @(z). Having in mind Eqgs. (11) and that g;(z) =
7"~ 1gi(z) we obtain:

max {gradgj: 1 <j<s}=N—-1)+@C—-1)=N+r—2<2r.
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Hence, the matrix G(z) has the form

kiir kipr+1 . ki,r4+(r—1)

iz C12Z C1rZ
G(z2) = : : : : )

Cﬂzkslr C522k52r+1 Csrzksrr+(r71)

where the coefficients k;; € {0, 1}. We can easily obtain the following result:

Lemma 2. Assume that N > 1. Then, foreach 1 < j < N — 1 there exist indices i’ # i, 1 < i, i’ <s,
such that ki # kyj. Otherwise, for each N < j < r it holds that kj = ky; forall 1 <, i’ <s.

Assume that N > 1 and recall that N < r. The entries of the jth column of the matrix @(z), where
N < j < r, have the form *Z~! (% € C); they could have the form *Z71 or %270~V whenever
1 < j < N — 1. Dividing the jth column by Z~1, obviously we obtain a matrix with the same rank
than G(z) for any z € C \ {0}. Thus, we introduce the new polynomial matrix G(z):

G2 = G@Q@ =M@ 4],

where G € C*~N*D denotes a scalar matrix and Q(z) := diag[1,z"", ..., z'~"]. Whenever
rank G < r — N 4 1, we have that rank G(z) = rank G(z) < rforallz € C\ {0} and, hence, there is

no polynomial left inverse for @(z). In the case rank G = r — N + 1, there exists an invertible matrix
R € C5*F such that

/
RG = g )
0

where ¢/ € CUr—N+tDx(=N+1) js ipvertible. Thus,

~ M1 (Z) Q/
RG(z) = [RM(z2) RG] = ,
(z) = [RM(2) RG] |:M2 @ 0}

The entries of the polynomial matrix M(z) € C**N=1 are of the form %z or constants; denoting
A = Z", the matrices M;(z),i = 1, 2, can be expressed as

M;(A) = Mjy — AMjp,

where My; € CO=NtDXWN=1) and My; € CETHN=DXN=1) Ag 3 consequence, we have the following
result:

Lemma 3. Assume that rankG = r — N + 1. Then, rank G(z) = r forallz € C \ {0} if and only if
rank My(A) =N — 1 forall A € C\ {0}.

The next step is to characterize when the rank of the matrix My; — AM>, equals N — 1 for any
A € C\ {0}. To this end, we use the Kronecker canonical form (KCF hereafter) of the matrix pencil
M (A) (see [9] for the details). By using the block structure notation A & B := diag(A, B), consider
the KCF of the matrix pencil My (1), i.e.,

K(A) := Spe () @ Jut, (M) @ Nug, (M) @ Sy, (3,
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where Sg,ﬁgft()\) denotes the right singular part of Ml (1), S{\e/ﬁ (1) denotes the left singular part, Jyg, (A) is
the block associated with the finite eigenvalues of the pencil and, finally, Ny, (1) is the block associated
with the infinite eigenvalue. Having in mind the structure of the different blocks appearing in the KCF
of the matrix pencil M (1), we can derive that the rank of K(1), and consequently of Ml (A),isN — 1
forall A € C\ {0} ifand only if K()) has no right singular part and the only possibly finite eigenvalue
is the zero one. In fact, we have the following result:

Lemma 4. The rank of the matrix Ml (X) is N — 1 for each A € C \ {0} if and only if the following
conditions hold:

1. The KCF of the matrix pencil M, (1) has no right singular part; and
2. If w is a finite eigenvalue of the matrix pencil M (1), then . = 0.

Now, Lemma 4 allows us to decide when the rank of our initial polynomial matrix G(z) is r for all
z € C\ {0}. Let us to remind all the given steps in reducing the initial polynomial matrix G(z). Namely:

G(2) ~ G(2) ~ G(z) ~ G(z) ~ [Ml @ g} ’
Mz (z) 0

where

1. G(z2) = G()U(2).
G = G).
3. G(z) = G(2)Q(2) = [M(2) 6], where ¢ € C*—N+D and Q(z) = diag[1,z7 1, ...,z "].

\S]

~ M (2) ¢
4, Ifrank G = r — N + 1, there exists R € C*** invertible such that R G(z) = 1@) where
Mz (Z) 0
the matrix ¢’ € CU—N+Dx=N+1) jsinvertible.
5. The matrices Mj;(z), i = 1, 2, can be expressed as Ml;(1) = M;; — AMj with A = Z.

As a consequence, we have proved the following result:

Theorem 2. Assume that supp Lo C [0, N], where N € Nwith N > 1, and take N < r < s. Let G(2)
be the corresponding s x r polynomial matrix given in (7). Then, rank G(z) = r forany z € C\ {0} ifand
only if the following statements hold:

L rankg =r—N+4 1;and
2. the KCF of the matrix pencil Ml; (A) has no right singular part, and the only possible finite eigenvalue
isu =0.

For practical purposes it is not necessary to compute the KCF of the matrix pencil M, (1) (if possible).
The needed information about M, (A) can be retrieved from the GUPTRI (General UPper TRIangular)
form of the matrix pencil. It is worth to mention that the GUPTRI form can be stably computed [6,7,18,
20]. As the matrix G(z) depends on z", in what follows we identify the matrix G (z) with G(A) where
r=17.

2.1. A toy model involving the quadratic B-spline

The following example illustrates the result given in Theorem 2. Consider as generator ¢ the
quadratic B-spline N3(t), i.e.,

t2 3 1
N3(©) = —xio. (0 + (—5 43— rz) X120 + > B = 07123 0),
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where x[q,5) denotes the characteristic function of the interval [a, b). In this case, for the identity
system, £f = f for all f € V,,, we have supp Lo C [0, 3], i.e, N = 3. Taking the sampling period
T =4/5,ie.,r = 4ands = 5, the Laurent polynomials g;(z), 1 < i < 5, given by (11) read:

- L1, o 8 .38 1,
7)) = —z+ -z, )= —+ —z+ —2°,
&1 TR B 25 ' 50" ' 50
- 9 4 ¥, 2 - 2 5 Y 4 9
7)) = —z — 4+ —z, 7)) = —z —z —,
& 50 50 ' 257 B¢ 25 50 50
- Los, B0, 8
zZ) = —Z —Z —Z .
& 50 50 25

Following the above steps we obtain

1,4 5

7372 000
B 0 L8
G = 24 0 2722 478
0 %z %2 373
| 5 37 352 0

Right multiplication by the matrix diag[1, 27!, 272, z~3] gives:

1 1
In Injo o
33 1 8
By gr0 £
GOy =M Ia=| 25 0|2 2 |,
2 37 9
0 25 |5 30
1 3|8
L 50 50 |25 _

where A = z*. The matrix ¢ € C°*? has rank 2; performing some elementary operations on the rows
of G we obtain

2z 0 010000
0% 0 1000[[0 2%
25 25
! — 9 37| —
g=1o0 =|1 o0o000]|| Z|=Ra
37 161 37 9
16 37 8
oo] |¥®-Foo1]|L 0]

~ [Ml ) g’}
Therefore, R G(L) = [RMI(A) RG] = where

Msy(%) 0
1 1
2 2%
Mz (1) = oA &+ aesA

1 1157 33 37
5 T 450> 50 T 2507
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In this case, a direct computation gives Ky, (1) = L;— (A), where

[010} [100}
Ly(A) = — A )
001 010

As a consequence, Theorem 2 ensures that the corresponding polynomial matrix G(z) possesses a
polynomial left inverse.

Next we deal with the problem of computing a polynomial left inverse of G(z) in the case where it
exists.

3. Computing a polynomial left inverse of the matrix G(z)

First notice that if we compute a polynomial left inverse of the matrix @(A) then we obtain a
polynomial left inverse of the matrix G(z). Indeed, remind that

G =G@U@ 'Q@),

where U(z) = dlag[zr L (wz)"1, ..., (W'12)"1], @, is the Fourier matrix of order r, and Q(z) =
diag[1,z71,...,2z'7"]. Thus 1fL(z) is a polynomial left inverse of the matrix G(z) then the matrix
Lg(z) = diaglz" ™", W2)" "1, ..., W) Mo T diag[1,z7', ...,z "IL(z)

will be a polynomial left inverse of the matrix G(z). As a consequence, we confine ourselves to the
problem of computmg a polynomial left inverse of the matrix G(z). To this end, consider G(A) =
AT=aBT (A =7 bemgL( %apolynomlalleft inverse of the matrix G (1), we have (A—AB)LT (A) =
I;. Let us denote L(X) := L' (X). As we are searching for s x r matrices L(A), whose entries are
polynomials, such that (A AB)L(X) = I, we can use the following notation:

LA =[Li(x)La(d) ... L:(V)], ie, Li(1) denotes the ith column of L(%),
Li(A) =€?+(}A+-~-+€;’A”, i=1,2,...,r, whered< eC’ k=0,1,...,v
As a consequence, equation (A — AB)L(A) = I, is equivalent to
AL + (AL} — BEYA + -+ (AL — BETHAY — BT =1 i=1,2,...,r,  (13)

where Ii denotes the ith column of the identity matrix I.. Equating coefficients, foreachi = 1, 2, ..., r,
we obtain the set of linear equations

A =1, Al -5 =0,..., A -B""=0 —BL =0

or in matrix form

s ; o
A —B e
A —B ¢! o
=], i=12,...,T, (14)
A-B||€& 0
i A L1t
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where the resulting block matrix has order (v + 2)r x (v + 1)s. The goal is to find v € N such that
the above r linear systems become consistent. Next, we come back to the example in Section 2.1.

The example rev~isited: Consider again the example involving the quadratic B-spline given in Section
2.1.In this case, G(z) = G(Z)U(Z)QZ1 diag[1,z7 1, z72, z73] and, taking A = z* we have

L _
ir oo
334 1 8
504 504 0 35
. | 2 9 37| _ 4T _ T
G =|2Zxr 0 2 Z|=4 —28",
2 37 9
0 3% 3 30
1 33 8
L 50 50 25 _
where
1 1 33 2
000 0 & —-1-2-Z00
oo 0 2 3 -1 _1 9 00
A= . 580 and B = 2 50
00 &2 0 0 0 00
8 37 9
0233 20 0 0 0 00

-B
Here, the matrix S = [ A 7flj| of size 12 x 10 has rank 10. Choosing the columns of L(A) as L;(A) =
€0 + 2] % € C>*1, the linear systems

0
}: 0|, i=1,2,3,4 (15)

have a unique solution. Observe that deleting the trivial equations 3 and 4, we have consistent square
systems. By using Matlab we obtain the left inverse

4.4812 —0.1438  0.0166 —0.0043 |
—3.4840 0.1118 —0.0128 0.0031
L) = 10° 1.6069 —0.0514 0.0056 0.0000
—0.4125 0.0125 0.0000 —0.0000

0.0500 0.0000 —0.0000 0.0000 |

[—0.0021 0.0001 —0.0000 0.0000

0.0517 —0.0017 0.0002 —0.0000
+10° | —0.4133  0.0133 —0.0015 0.0004 | A.
1.6071 —0.0516 0.0059 —0.0015
| —3.4841 0.1118 —0.0129 0.0033 |
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At this point, the challenge problem is to give conditions on the matrix pencil AT =BT inorder to
obtain aleftinverse with polynomial entries (having nonnegative powers) by solving the corresponding
linear systems (15). The answer to this question is based on the KCF of the matrix pencil AT —a8T.In
our example the corresponding KCFis N1 (1) &Ny (A) @L;r (A), i.e., the pencil has not finite eigenvalues,
all the blocks associated with the infinite eigenvalue have order 1, and the left singular part has a
unique block. In what follows, we prove that these conditions for the KCF of the matrix pencil G())
are sufficient to give a positive answer to the raised problem in a very important particular case:

3.1. The case where the oversampling rate is minimum for a fixedr > N

It corresponds to the case where N < rand s = r + 1, i.e,, the sampling period is T = r/(r + 1).
Here, the matrix pencil G(1) = A" — A8 has the form

[0---00--- 0 00] (% .. % %0 --- 0]
0---00--- 0 = * ... *x 00---0
0---00 % --- kx%x|—Alx .. 000---0]/, (16)
0 * ok % % 0 - 00 0
0 * k% x 0 0 00 0

i.e., denoting the entries of AT and BT by AJ and B,-]T respectively, we have AJ =0ifi+j<2+r

ori+j>r+N+1B8/y =0andB] =0ifi+j > N+ 1. Having in mind the structure of the

matrices AT and 8" we have rank(A") < r,rank(B") < N — 1 and rank ([ _fl _B]) <r+N-—1.
Whenever these matrices have maximum rank, the following result holds:

Theorem 3. Assume that the singular matrix pencil AT =BT of size (r + 1) x r satisfies the following
conditions:

1. The pencil has no finite eigenvalues,
2. rank(AT) =r,
3. rank(BT) =N —1,withN < r,and

4. rank ([_ﬁ _B]) =r+N-1

Then, the Nr x (N — 1)(r + 1) matrix

—B
A —B
A —B

A —B

has rank (N — 1)(r 4+ 1).
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First note that rank(AT) = r implies that the KCF of the matrix pencil AT — ABT has not right
singular part (and also that 0 is not an eigenvalue). Thus, by using Theorem 2, the pencil AT — BT
has a polynomial left inverse. Before to prove Theorem 3, and in order to ease its proof, we first obtain,
under the theorem hypotheses, the KCF of the matrix pencil AT —aBT:

r—N-+1
Lemma 5. The KCF of the matrix pencil AT — AB " is ( @ Ny (A)) ® L,I_l (A).
i=1

Proof of Lemma 5. Since the matrix pencil has neither finite eigenvalues nor a right singular part, we
conclude that its KCF has the form N(}) @ L(%), where N()) denotes the blocks associated with
the infinite eigenvalue and Lleft (A) denotes the left singular part. Since r + 1 is the number of rows
of the matrix pencil, r the number of columns, and the rank of Bis N — 1 it cannot appear blocks of
the form LiT (A) fori > N. Each left singular block increases in one the number of rows with respect

to the number of columns; hence, as the size of AT — ABT is (r + 1) x r, it can appear only one
left singular block in its KCF. Furthermore, we prove that this only left singrular block corresponds to
L,I_l (A). Indeed, let ICZ — )»IC; be the KCF of the matrix pencil AT — BT, Obviously, we have that

rank(4") = rank(lCD =r,rank(B") = rank(lcg) =N-—1and

-B —Kg
rank = rank =r+N-—1.
A —B Ki —Kp

The rank of the matrix [ _,’gi —Ks ] coincides with its number of nonzero rows because the number of

null rows of Kz isr — N + 1, i.e,, the number of blocks in N(1); the matrix X4 has not null rows so
that, the number of nonzero rows of[ _ﬁf\ 7,(8} is2r—(r—N4+1)=r+N-—-1.
Assume that in the KCF of the matrix pencil AT —A8 " appears a singular block LiT (A) withi < N—1.

Since the rank of BT is N — 1, the regular part in the KCF has a block of the form N;j(A) with | > 2. By
rearranging the blocks, we obtain that the KCFof AT — ABT isNJ(L) @ - - - & LiT (A); therefore

[ 00---0000---00]
~10---0000---00

* % -+.-+- 3%k 0 O0---00

—Kp5 x % ---%x%x 0 0---00
Ka —Ks 10---0000---00
01 00-10---00

ko ok k ok ok ok k%

BE I I R

In this case, the rank of [ _,’gj —ICB] is strictly smaller than r + N — 1 because the second row and

the (r + 1)th row are linearly dependent. This contradicts the hypotheses and, hence, the only left
singular block is LII—] (X). Having in mind that rank(8") = N — 1, we conclude that the KCF of the
r—N-+1
matrix pencil AT — ABT is ( P m (,\)) ®Ly (). O
i=1
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Proof of Theorem 3. Once we have determined the KCF of the matrix pencil AT — BT we compute
the rank of the matrix G,. If K4 — AKp is the KCF of the matrix pencil A — AB, it is obvious that

ke
Ka —Kg
Ka —K
rank(G;) = rank A 5
Ka —Kg
L Ka

As ICI — )LIC;;'— is the KCF of the matrix pencil AT — BT, Lemma 5 gives

I 0 00
T T
Kl = . Ky = ,
A |:0LI:| 5 {OL;J

where I = I;_n+1) denotes the identity matrix of order r — N + 1, and

[0 0 ] (10 --- 0]
1o 01 0
LT= |t i feM W= T | e OV,
0 0 1
L 1] 10 0]
Asa consequence,
0 o T
0 —Lg
I 0 0 0
0 Ly 0—lLg
I 00 O
rank(G,;) = rank 0 Ly, 0 —ILg
I 00 O
0 Ly 0 —Lg
I 0
L 0 Ly
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A suitable interchange of rows and columns gives

[0+ 0 0 o]
I
I
rank(G,) = rank —Lg O )
La —Lg
Ly —Ls
I 0 Ly

where the first r — N + 1 = r — rank(KC) are null rows; hence, the rank of G, equals (N — 1)(r + 1)
if and only if the remaining (N — 1)(r 4 1) rows are linearly independent. This is equivalent to the
matrix

[—1s 0
Ly —Ls
Lag= e CNIN=D)xN(N-1)
Lqa —Lp
0 Ly |

has full rank. To prove it, we use the following result in [9, p. 32]: Let x(A) be a nonzero vector having
the form

X(A) = Xo + AX; + A%y + -+ + A°x,, x; € CVX!

such that (Ly — ALg)x(A) = 0. Then, necessarily, ¢ > N — 1. Now, let us continue by contradiction,
and assume that the matrix £ 4 z has not full rank. Then, there exists a nonzero vector z € CNIN=1x1
such that £, 5z = 0. Denotingz' = [zy_, ... z{ z] ] wherez; € CN*1, we obtain that

(La — ALg) (2o + Azy + Azp + - - + AN "2zy_5) =0,

which contradicts the minimal property for N — 1. Therefore, the matrix £ 4 5 has full rank and, finally,
rank G, = (N—1)(r+1). O

Remark. Notice that Theorem 3 remains valid for any singular matrix pencil AT =BT of size (r4+1)xr
substituting N — 1 by p € N which satisfies0 < p < r.

Consider the matrix pencil @(k) = A" — ABT of size (r + 1) x r with N < r. Assuming that
the G()\) has polynomial left inverses, the following result gives sufficient conditions for computing
one of such polynomial left inverses. Once we have got one solution, it is straightforward to derive the
remaining solutions.

Corollary 1 (Computing a polynomial left inverse of @@)). Let G(A) = AT — ABT be a singular
matrix pencil of size (r + 1) x r with N < r. Assume that G(X) admits polynomial left inverses, and that
the following conditions hold:
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1 rank(AT) =r,
2. rank(8T) = N — 1, and

3. rank ([’ﬁ _B]) =r+N-1

Consider the Nr x (N — 1)(r + 1) matrix G, in Theorem 3. Then, the linear systems

TANS 0
A
G| |= (’) , i=1,2,...,71, (17)
0 .
5 I

where Ii denotes the ith column of the identity matrix I,, admit a unique solution. Moreover, let
[K,N_Z lfv_g ... K?]T e CWN=DUHD pe this solution fori = 1,2, ...,r, and consider the polyno-
mial vector L;j(A) = (,Q + l})» + -+ 1’,,(\'_2)»”_2, i=1,2,...,r Then, the (r + 1) X r polynomial
matrix

L) = [Li(M) L) ... Li(WV)]
satisfies

LTW)GO) =1,

Proof. Theorem 3 implies that the rank of the coefficient matrix G, € CN>*N=D0+D jg (N—1)(r41)
in (17). Having in mind (16), the last r — N + 1 rows of B are null. Deleting these rows in the first row
block (which become trivial equations in (17)), we obtain an square invertible matrix, and consequently
(17) has a unique solution for eachi = 1, 2, ..., r. Recalling (14), we finally obtain that LT(n)isa
polynomial left inverse of G(1). O

Observe that any other polynomial left inverse A(A) of the matrix @(A) is given by
A =LT0) +B0) [l = GOILT )],

where B(A) is an arbitrary r x (r + 1) polynomial matrix.
For the matrix pencil G(A) = AT — ABT of size (r +1) x r with N < r, it is easy to give sufficient
conditions in order to satisfy the conditions 1-3 in Corollary 1. Namely:

Corollary 2. Consider the singular matrix pencil G(.) = AT — AB" of size (r + 1) x r with N < r.
Denoting AT = [Ai-jr ] and BT = [B,-}r ], assume that the following conditions hold:

A #£0ifi+j=r+2o0ri+j=r+N+1, (18)
B #0ifi+j=N+1landi>2. (19)

Then the conditions 1-3 in Corollary 1 are satisfied.
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Proof. Conditions (18) and (19) say that the entries marked as e in the matrices below are nonzero

[0 ....... 00 - - 0 -~ 0e |
0 ....... 00 - - 0 - o %
| . e B An A
A=10....... 00 e ---|x%x --- % % :|: G(CTX(T'H)’
Ax1 A
0 ....... 0e x * % ok 21 A22
0..... 0 e % 3 * @
0..... ® k k% * e 0
_O. % sk ko eee e ° 00_
_>x<>x< * o|0 0—
* ok e 0|0 0
B=|x*xe 00|0 0| = e(ch(r-H)’
00
00 0 0|0 0
00---00[0---0

where Ay; € CU=NFDXT=N+1) and B, € CN=1D>N Trivially, rank(A") = randrank(B") = N—1.

Condition 3 comes by observing the form of the matrix [ _ffl 78]. Interchanging rows and columns

we obtain that the matrix [ o B] has the same rank than the matrix

0 0 0O
Bn 0 0 O
An B Az O
Ay 0 Axpn O

Since the matrix Ay, € CU~NFDXT=N+1) js jnvertible, elementary row operations give the new
matrix

0 0 0O
By 0 0 O
Ay By 0 0
Ay 0 A O

Finally, the above matrix hasrank2(N—-1)4+r—N+4+1=r+N—-1. O
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Remark that this condition can be checked by using the algorithm guptri. In case that conditions
1-3 in Corollary 1 are satisfied, we could check directly the consistency of the linear systems (17); if
they are not consistent, we derive that the pencil G(A) has not polynomial left inverses.

In Corollary 2 we allow the first column of 3 to be a zero column. Nevertheless, for the condition 1
in Theorem 3 to be satisfied, the first column of B should have at least one nonzero element.

Corollary 1 provides a method to obtain an algebraic matrix polynomial of degree v = N — 2 which
is a left inverse of G(X). In the next section we prove that all terms in this polynomial matrix are
nonzero. The number of nonzero terms in a left inverse of G()) and the support of the reconstruction
functions are intimately related (see (5)): More zero terms implies a smaller support. Below we prove
that the mentioned solution is optimal in the sense that every solution of the problem has, at least,
N — 1 nonzero terms.

3.2. Optimality of the solution

In the previous section we have found an algebraic polynomial matrix, L(x) € C"+D*" which is
a left inverse of G(A). This algebraic polynomial matrix can be written as:

LV = Lo+ L1h + -+ LyoAN 2,

where £; = [£ ... €l] € CT*+D*T and Zji- € C D1 Hence, each column of L(1), Lj(%), can be
written as Lj(X) = ZJQ + (’,}A +. 4 E}V_z)LN_Z.

The optimality problem involves finding a left inverse polynomial matrix of @(k) with the minimum
number of nonzero terms. Let p € Z denotes the smallest power of A in the polynomial matrix L(A)
we are looking for. If L(A) = £pAP + Lp 1 AP+ - 4 £, ,APTY, then each column of L() can be
written as:

%
__pp p+1, p+1 p+v,p+v _ p+k § p+i
L) =4AP + 477 A+ + 4 /\””_120(] APTE
K—

As a consequence, equation (4 — AB)L(A) = I, is equivalent to

vV
DPyp p+k p+k—1 p+k pP+Hvap+v+1 _ gj
AL +l§] (A(lj — B! )k — BEA =1, (20)
k=

forj=1,2,...,r, where . denotes the j-th column of I, the identity matrix of order r.

Notice that the left-hand side of (20) should have a constant term because the right one is a constant.
As a consequence,0 < —p < v+ 1.Moreover, since the lastr — N+ 1rows of Barenull,if —p = v 41,
the equation BeP VT = I‘Ir has nosolutionforj = N,N+1, ...,r—1, r;consequently,0 < —p < v.
Therefore, (20) is equivalent to the recursive scheme:

P _ j
AZJ- = I,
p+1 _ P J
Alj = Blj +Zp 41
: : : , (21)
p+k p+k—1 j
Aﬁj = Blj +Z, 4k
until k = v, together with the equation:
B = 0, (22)

where I{Hk = B_p,kI]} for k > 0and §_p i is the Kronecker delta.
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In what follows, we assume that G(A) admits a polynomial left inverse and that the matrices .4 and
B verifies the hypotheses in Corollary 2. Recall that under these hypotheses, in Section 3 a solution of
(20) has been obtained forp = 0and v = N — 2.

Next step is to prove that whenever 0 < —p < v < N — 2 the system (21) and (22) has not a
solution. Consequently, the matrix G(A) does not admit a polynomial left inverse.

3.2.1. Casev < N —2
Since we are assuming the hypotheses in Corollary 2 we can write A = [0 A]and B = [b B],
where 0, b € C™*1 A, B € C"™*" and A is regular. The next result gives us the structure of the sequence

i +k}ﬁ0 which solves the recursive scheme (21).
Theorem 4. The solutions of (21) are of the form:
+k
lp+k fﬁ 1
et = = , (23)
I k—1 I T 1.
s MU [Pt gt ]+ Z(A BATID

where €p+k e C, ij;k C, M1 = 0 and MIXl € C™k for k € N U {0}. Moreover, the matrices
MK ¢ (Cer does not dependonj € {1,2...,r}.

eﬂ
Proof. We proceed by induction on k. For k = 0, we have to solve Allp = Ip Therefore, [0 A] [ep ] =

j,2
AZPZ, and consequently sz = MO 4 A~ le

Suppose that (23) holds for k € N U {0} and consider the equation AE})H{H = Bljp+k + Ij+k+1'
or equivalently,

ep+k+1 2P+k

j

[0 A] |:ep+k+1:| b B] |:£p+k:| T Dptier1
Ji2 7,2

Hence, €p+k+] =A" 1b€p+k ’1B€ﬁ+" +A7'Z |44 By using the induction hypothesis we obtain:

5 = a et A e [ et e ]

+A_]BZ(A_]B)’A_1I]+,< AT

i=0
k+1
_ M[k+1] (EP—O—k ‘ep+k—1 p ) + Z(A B)IA I]
j,1 0 %51 L ]1’ p+(k+1)—i*
i=0

Notice that matrices M depend on A and 3 and are independent of j. [

By using Theorem 4 and that there is only one nonzero 7 ptiv SAY T, +10 = Ii we have that

£P+V (1
(I.H'V = i1 = ptv :
! e e fet et e 4 ey A

for 1 <j < r.Moreover, Zf *¥ has to verify Blf o Equivalently,
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P+
j. 1 1 +v—1 ,p+v—2 T i a—14i
[b B] Lﬁm} =be),, + MV [T T 0] +BATB) AT

) ]’1
j,2
+ +v-1 T Av—io i
=M 7]+ AT T =, (24)
which is a linear system with r equations and v + 1 unknowns, £° B S 20, for each

X a0t Y
j=1,2,...,r.

To deal with the system (24) we have to calculate the rank of (BA~")¥ for k € N U {0}:
Lemma 6. Forallk € N U {0}, the rank of (BA~")*is N — 1.
Proof. Denote
A A Vii V B11 O
A |An 12;A_1= 1 12;B= 11 ’
A Az Vo1 Voo 00

where Aq1, Vi1, B11 € (C(Nil)x(Nil) and Ay, Voy € (C(rfN+l)x(r7N+1)‘ Then, since AATT = I, we
obtain:

AnVir +ApVy =In_q, (25)
AnVi + AxppVe = 0. (26)
From (18), we know that Ay; is a regular matrix, so Vo1 = —A;21A21 V11 and, substituting in (26),

we obtain that
AnVin — ApAyy AoiVin = (An — AAyy Ap)Vir = In—1.

Thus, Vy; is a regular matrix. On the other hand, BA™! = [BUOV“ B“(;/ 12 ] It is a straightforward calcu-
lation to prove that

At = |:(311V11)k (311V11)k1311V12}
0 0

and, since by (19) By is regular, we have that rank(BA~)¥ =N — 1. O

The system
» T i
M[U+1] [eﬁ-ll—v’ ejl‘),TU o eﬁl] — —(BA l)v IO—HIJr’ j=1,2,...,1 (27)
is compatible forallj = 1, 2, ..., r if and only if rank[M 11 | (BA=1)V~0+1] = rank MV, Since

rank(BA~1)V "0+ 1 js N — 1 and M T € C™*(+1 depends only on .4 and B we deduce that (27) is
compatible if v + 1 > N — 1. The following results holds:

Theorem 5. Ifv < N — 2 there is not a (r 4+ 1) x r polynomial matrix L(A) = £,AP 4 LPHM’H +
o+ Lp gy APTY satisfying Eq. (20).

3.22. Casev > N — 2

Theorem 3 in Section 3 ensures that (20) has a unique solution for v = N — 2. However, when
v > N — 2 there are infinitely many polynomial matrices L(A) satisfying Eq. (20). Having in mind the
matrix G, in Theorem 3, we introduce the new matrices G, (k) € Ck+2rxk+D+1) | ¢ N U {0},
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defined recursively as:

0
—B 0
GO=| [ G =| A4 Bl G = ' 0
0 A —B
| 0 0| A |

Since B has r — N + 1 null rows, G, (k) has (kr + r) + N — 1 nonzero rows. So we have that
rank G, (k) < min{(kr +r) + N — 1, (kr +r) + k + 1}. It is straightforward to prove that previous
inequality is, indeed, an equality. Hence, since we are assuming the hypotheses in Corollary 2, if v >
N — 2, then the rank of G, (v) is the number of its nonzero rows, i.e., rank G, (k) = (k + 1)r + N — 1.
Thus, for v > N — 2 the system (21)-(22) is compatible foreveryj = 1,2, ..., r.

LetL(X) = LoAP+Lp 1 APT 4+ - .4 £, APT asolution of (20). Whatever v > N —2, the number
of nonzero terms of L(1) is greater or equal than N — 1. On the contrary, let us suppose that the number
of nonzero terms of L(}) is less than N — 1. In this case, let u = min{m > 0 : L1 = 0}andv =
max{m < 0 : L;;_1 = 0}.1tis easy to check that the polynomial matrix £,A" + - - -4+ Lo+ - - - + Ly A"
is a solution of (20) whose terms are all nonzero (Lo 7 0 because L(}) is a solution of (20)). But this
leads to a contradiction with Theorem 5. Therefore, the following result holds:

Theorem 6. Assume v > N — 2 and let L(A) = LpAP + L, 11 APT1 4o + £, APT a solution of Eq.
(20). The number of nonzero terms of L(A) is at least N — 1.
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