3,938 research outputs found

    Metric perturbations in two-field inflation

    Full text link
    We study the metric perturbations produced during inflation in models with two scalar fields evolving simultaneously. In particular, we emphasize how the large-scale curvature perturbation ζ\zeta on fixed energy density hypersurfaces may not be conserved in general for multiple field inflation due to the presence of entropy as well as adiabatic fluctuations. We show that the usual method of solving the linearized perturbation equations is equivalent to the recently proposed analysis of Sasaki and Stewart in terms of the perturbed expansion along neighboring trajectories in field-space. In the case of a separable potential it is possible to compute in the slow-roll approximation the spectrum of density perturbations and gravitational waves at the end of inflation. In general there is an inequality between the ratio of tensor to scalar perturbations and the tilt of the gravitational wave spectrum, which becomes an equality when only adiabatic perturbations are possible and ζ\zeta is conserved.Comment: RevTex, 9 pages, 1 uuencoded figure appended, also available on WWW via http://star.maps.susx.ac.uk/index.htm

    Microwave background anisotropies in quasiopen inflation

    Get PDF
    Quasiopenness seems to be generic to multi-field models of single-bubble open inflation. Instead of producing infinite open universes, these models actually produce an ensemble of very large but finite inflating islands. In this paper we study the possible constraints from CMB anisotropies on existing models of open inflation. The effect of supercurvature anisotropies combined with the quasiopenness of the inflating regions make some models incompatible with observations, and severely reduces the parameter space of others. Supernatural open inflation and the uncoupled two-field model seem to be ruled out due to these constraints for values of Ω00.98\Omega_0\lesssim0.98. Others, such as the open hybrid inflation model with suitable parameters for the slow roll potential can be made compatible with observations.Comment: 19 pages, ReVTeX, 10 figures inserted with eps

    Complete power spectrum for an induced gravity open inflation model

    Get PDF
    We study the phenomenological constraints on a recently proposed model of open inflation in the context of induced gravity. The main interest of this model is the relatively small number of parameters, which may be constrained by many different types of observation. We evaluate the complete spectrum of density perturbations, which contains continuum sub-curvature modes, a discrete super curvature mode, and a mode associated with fluctuations in the bubble wall. From these, we compute the angular power spectrum of temperature fluctuations in the microwave background, and derive bounds on the parameters of the model so that the predicted spectrum is compatible with the observed anisotropy of the microwave background and with large-scale structure observations. We analyze the matter era and the approach of the model to general relativity. The model passes all existing constraints.Comment: 12 pages RevTeX file with four figures incorporated (uses RevTeX and epsf). Also available by e-mailing ARL, or by WWW at http://star-www.maps.susx.ac.uk/papers/early_papers.html Only change is additional reference

    Galaxy correlations and the BAO in a void universe: structure formation as a test of the Copernican Principle

    Get PDF
    A suggested solution to the dark energy problem is the void model, where accelerated expansion is replaced by Hubble-scale inhomogeneity. In these models, density perturbations grow on a radially inhomogeneous background. This large scale inhomogeneity distorts the spherical Baryon Acoustic Oscillation feature into an ellipsoid which implies that the bump in the galaxy correlation function occurs at different scales in the radial and transverse correlation functions. We compute these for the first time, under the approximation that curvature gradients do not couple the scalar modes to vector and tensor modes. The radial and transverse correlation functions are very different from those of the concordance model, even when the models have the same average BAO scale. This implies that if void models are fine-tuned to satisfy average BAO data, there is enough extra information in the correlation functions to distinguish a void model from the concordance model. We expect these new features to remain when the full perturbation equations are solved, which means that the radial and transverse galaxy correlation functions can be used as a powerful test of the Copernican Principle.Comment: 12 pages, 8 figures, matches published versio

    Chern-Simons production during preheating in hybrid inflation models

    Get PDF
    We study the onset of symmetry breaking after hybrid inflation in a model having the field content of the SU(2) gauge-scalar sector of the standard model, coupled to a singlet inflaton. This process is studied in (3+1)-dimensions in a fully non-perturbative way with the help of lattice techniques within the classical approximation. We focus on the role played by gauge fields and, in particular, on the generation of Chern-Simons number. Our results are shown to be insensitive to the various cut-offs introduced in our numerical approach. The spectra preserves a large hierarchy between long and short-wavelength modes during the whole period of symmetry breaking and Chern-Simons generation, confirming that the dynamics is driven by the low momentum sector of the theory. We establish that the Chern-Simons production mechanism is associated with local sphaleron-like structures. The corresponding sphaleron rates are of order 10^{-5} m^4, which, within certain scenarios of electroweak baryogenesis and a (not unnaturally large) additional source of CP violation, could explain the present baryon asymmetry of the universe.Comment: 28 pages, 15 figures, ReVTeX. With minor corrections, version to appear in Phys. Rev.

    The radial BAO scale and Cosmic Shear, a new observable for Inhomogeneous Cosmologies

    Get PDF
    As an alternative explanation of the dimming of distant supernovae it has recently been advocated that we live in a special place in the Universe near the centre of a large spherical void described by a Lemaitre-Tolman-Bondi (LTB) metric. In this scenario, the Universe is no longer homogeneous and isotropic, and the apparent late time acceleration is actually a consequence of spatial gradients. We propose in this paper a new observable, the normalized cosmic shear, written in terms of directly observable quantities, and calculable in arbitrary inhomogeneous cosmologies. This will allow future surveys to determine whether we live in a homogeneous universe or not. In this paper we also update our previous observational constraints from geometrical measures of the background cosmology. We include the Union Supernovae data set of 307 Type Ia supernovae, the CMB acoustic scale and the first measurement of the radial baryon acoustic oscillation scale. Even though the new data sets are significantly more constraining, LTB models -- albeit with slightly larger voids -- are still in excellent agreement with observations, at chi^2/d.o.f. = 307.7/(310-4)=1.005. Together with the paper we also publish the updated easyLTB code used for calculating the models and for comparing them to the observations.Comment: 18 pages, 8 figures, the code can be downloaded at http://www.phys.au.dk/~haugboel/software.shtm

    Symmetry Breaking and False Vacuum Decay after Hybrid Inflation

    Get PDF
    We discuss the onset of symmetry breaking from the false vacuum in generic scenarios in which the mass squared of the symmetry breaking (Higgs) field depends linearly with time, as it occurs, via the evolution of the inflaton, in models of hybrid inflation. We show that the Higgs fluctuations evolve from quantum to classical during the initial stages. This justifies the subsequent use of real-time lattice simulations to describe the fully non-perturbative and non-linear process of symmetry breaking. The early distribution of the Higgs field is that of a smooth classical gaussian random field, and consists of lumps whose shape and distribution is well understood analytically. The lumps grow with time and develop into ``bubbles'' which eventually collide among themselves, thus populating the high momentum modes, in their way towards thermalization at the true vacuum. With the help of some approximations we are able to provide a quasi-analytic understanding of this process.Comment: 33 pages, 16 figures, LaTeX, uses revtex. Version to be published in Phys. Rev. with minor change

    Complex structure moduli stability in toroidal compactifications

    Get PDF
    In this paper we present a classification of possible dynamics of closed string moduli within specific toroidal compactifications of Type II string theories due to the NS-NS tadpole terms in the reduced action. They appear as potential terms for the moduli when supersymmetry is broken due to the presence of D-branes. We particularise to specific constructions with two, four and six-dimensional tori, and study the stabilisation of the complex structure moduli at the disk level. We find that, depending on the cycle on the compact space where the brane is wrapped, there are three possible cases: i) there is a solution inside the complex structure moduli space, and the configuration is stable at the critical point, ii) the moduli fields are driven towards the boundary of the moduli space, iii) there is no stable solution at the minimum of the potential and the system decays into a set of branes.Comment: 24 pages, JHEP3.cls, 19 figures. A few references adde

    A parametrization of the growth index of matter perturbations in various Dark Energy models and observational prospects using a Euclid-like survey

    Full text link
    We provide exact solutions to the cosmological matter perturbation equation in a homogeneous FLRW universe with a vacuum energy that can be parametrized by a constant equation of state parameter ww and a very accurate approximation for the Ansatz w(a)=w0+wa(1a)w(a)=w_0+w_a(1-a). We compute the growth index \gamma=\log f(a)/\log\Om_m(a), and its redshift dependence, using the exact and approximate solutions in terms of Legendre polynomials and show that it can be parametrized as γ(a)=γ0+γa(1a)\gamma(a)=\gamma_0+\gamma_a(1-a) in most cases. We then compare four different types of dark energy (DE) models: wΛw\LambdaCDM, DGP, f(R)f(R) and a LTB-large-void model, which have very different behaviors at z\gsim1. This allows us to study the possibility to differentiate between different DE alternatives using wide and deep surveys like Euclid, which will measure both photometric and spectroscopic redshifts for several hundreds of millions of galaxies up to redshift z2z\simeq 2. We do a Fisher matrix analysis for the prospects of differentiating among the different DE models in terms of the growth index, taken as a given function of redshift or with a principal component analysis, with a value for each redshift bin for a Euclid-like survey. We use as observables the complete and marginalized power spectrum of galaxies P(k)P(k) and the Weak Lensing (WL) power spectrum. We find that, using P(k)P(k), one can reach (2%, 5%) errors in (w0,wa)(w_0, w_a), and (4%, 12%) errors in (γ0,γa)(\gamma_0, \gamma_a), while using WL we get errors at least twice as large. These estimates allow us to differentiate easily between DGP, f(R)f(R) models and Λ\LambdaCDM, while it would be more difficult to distinguish the latter from a variable equation of state parameter or LTB models using only the growth index.}Comment: 29 pages, 7 figures, 6 table

    La transición ediacárico-cámbrica: facies sedimentarias versus extinción

    Get PDF
    Recent analysis of the terminal Ediacaran, Rawnsley Quartzite, in the Flinders Ranges of South Australia, demonstrates that key taxa of the Ediacara biota are restricted to certain sedimentary facies and stratigraphic levels. The Rawnsley Quartzite consists of three members separated by disconformities: (i) the basal, shallow marine Chace Sandstone Member is unfossiliferous, but replete with textured organic surfaces; (ii) the overlying Ediacara Sandstone Member fills submarine incisions cut through the underlying Chace Quartzite Member and paralic Bonney Sandstone below the Rawnsley Quartzite; and (iii) the Ediacara Sandstone Member is incised by the less fossiliferous Nilpena Sandstone Member that caps the Rawnsley Quartzite.Un estudio reciente de la Cuarcita de Rawnsley, en el Ediacárico terminal Ediacaran de la Cordillera de Flinders, Australia meridional, demuestra cómo algunos taxones clave de la biota de Ediacara están restringidos a ciertas facies sedimentarias y determinados niveles estratigráficos. La Cuarcita de Rawnsleycomprende tres miembros separados por discotinuidades: (i) el Miembro basal de la Arenisca de Chace es somera y azoica, aunque destacan las superficies con texturas orgánicas; (ii) el Miemrbo de la Arenisca de Ediacara rellena un Sistema de incisiones submarinas que recortan el miembro inferior de Chace y la Arenisca parálica de Bonney, infrayacente a la Cuarcita de Rawnsley; y (iii) el Miembro de la Arenisca de Ediacara es asimismo recortada de forma erosiva por el Miembro de la Arenisca de Nilpena, menos fosilífera
    corecore