69 research outputs found

    Estudio y optimización de sensores de microondas para la caracterización y monitorización de materiales en procesos industriales

    Full text link
    En esta tesis se realiza el análisis y la optimización del diseño de sensores de microondas, basados tanto en guías de onda coaxiales como en circuitos planares, para poder llevar a cabo la caracterización dieléctrica de materiales, así como la monitorización de los mismos en procesos industriales. Se describen novedosos métodos de diseño para conseguir que los sensores proporcionen la máxima sensibilidad a los cambios de las propiedades dieléctricas de los materiales; y se aplican nuevos modelos de análisis de los sensores de microondas, más completos que los existentes hasta el momento. Todo ello ha permitido desarrollar con éxito diversas aplicaciones tanto en el ámbito industrial como en el de laboratorio.García Baños, B. (2008). Estudio y optimización de sensores de microondas para la caracterización y monitorización de materiales en procesos industriales [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/10628Palanci

    Microwave-triggered redox switching of materials enables hydrogen production and green chemistry

    Full text link
    García-Baños, B.; Serra Alfaro, JM.; Catalá Civera, JM. (2020). Microwave-triggered redox switching of materials enables hydrogen production and green chemistry. AMPERE Newsletter. 105:1-5. http://hdl.handle.net/10251/165731S1510

    In-situ measurements of high-temperature dielectric properties of municipal solid waste incinerator bottom ash

    Full text link
    [EN] Microwave heating is a potential green technology demonstrating many advantages over conventional heating methods. Prior to designing an industrial microwave process, however, a fundamental knowledge of the dielectric properties of the material to be thermally treated is imperative, as these properties determine the response of the material to an applied electromagnetic field. In this study, the fundamental interactions between microwave energy and municipal solid waste incinerator (MSWI) bottom ash (BA) are investigated through in situ complex permittivity measurements. Using an enhanced version of the cavity perturbation method, the dielectric properties were determined from room temperature up to 1100 degrees C at a frequency close to the industrial 2.45 GHz. The results demonstrated that BA is a low-loss microwave absorber up to 320 degrees C, above which microwave flash pyrolysis of the organic matter abruptly enhances the dielectric loss of BA, resulting in a thermal runaway. The addition of water and graphite to BA induces a higher dielectric constant and loss factor. The evolution of the dielectric properties as a function of temperature is correlated to changes in the material as determined by Simultaneous Differential Scanning Calorimetry, Thermogravimetric Analysis and High Temperature X-ray Diffraction. The reported results form a baseline for the assessment of the MSWI BA response under microwave irradiation.This work was supported by the European Community's Horizon 2020 Programme under Grant Agreement No. 721185 (MSCA-ETN NEW-MINE). This publication reflects only the authors' view, exempting the Community from any liability. Project website: http://new-mine.eu/.Flesoura, G.; García-Baños, B.; Catalá Civera, JM.; Vleugels, J.; Pontikes, Y. (2019). In-situ measurements of high-temperature dielectric properties of municipal solid waste incinerator bottom ash. Ceramics International. 45(15):18751-18759. https://doi.org/10.1016/j.ceramint.2019.06.101S1875118759451

    A step ahead on efficient microwave heating for kaolinite

    Full text link
    [EN] The thermal evolution of kaolin clay under microwave radiation shows an unexpected large heating rate up to 500 degrees C/min for temperatures > 650 degrees C. Such heating rate is associated with a resistivity drop of > 10(3) Omega.m observed after the dehydroxylation process of the kaolin structure. The high efficiency of the microwave heating effect is correlated with the presence of surface carriers that absorbs microwaves electromagnetic field. The layered structure of the clay-based materials allows the appearance of charge carriers at the surface of the crystal lattice that is electromagnetically activated. This effect represents a breakthrough in the efficient use of microwaves energy in order to produce efficient thermal treatments in large volume of non-metallic minerals with a drastic reduction of the greenhouse gasses for mass production industries.The authors express their thanks to the project MAT-2017-86450-C4-1-R from the Spanis Goverment for the financial support.Reinosa, JJ.; García-Baños, B.; Catalá Civera, JM.; Fernández Lozano, JF. (2019). A step ahead on efficient microwave heating for kaolinite. Applied Clay Science. 168:237-243. https://doi.org/10.1016/j.clay.2018.11.001S23724316

    Directional Coupler Calibration for Accurate Online Incident Power Measurements

    Full text link
    © 2021 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] This letter proposes a calibration method to properly measure the incident power in a directional coupler (DC) when the measurement configuration has low directivity. The proposed method is based on measurements of short-circuits placed at different distances to calibrate the DC response. Results show that the method is clearly robust and provides accurate measurements even for directivities as low as 10 dB.This work was supported by the European Regional Development Fund (ERDF) through the Valencia Region 2014-2020 Operational Program under Project IDIFEDER/2018/027.Penaranda-Foix, FL.; Catalá Civera, JM.; Gutiérrez Cano, JD.; García-Baños, B. (2021). Directional Coupler Calibration for Accurate Online Incident Power Measurements. IEEE Microwave and Wireless Components Letters. 31(6):624-627. https://doi.org/10.1109/LMWC.2021.3070788S62462731

    Temperature Assessment Of Microwave-Enhanced Heating Processes

    Full text link
    [EN] In this study, real-time and in-situ permittivity measurements under intense microwave electromagnetic fields are proposed as a powerful technique for the study of microwave-enhanced thermal processes in materials. In order to draw reliable conclusions about the temperatures at which transformations occur, we address how to accurately measure the bulk temperature of the samples under microwave irradiation. A new temperature calibration method merging data from four independent techniques is developed to obtain the bulk temperature as a function of the surface temperature in thermal processes under microwave conditions. Additionally, other analysis techniques such as Differential Thermal Analysis (DTA) or Raman spectroscopy are correlated to dielectric permittivity measurements and the temperatures of thermal transitions observed using each technique are compared. Our findings reveal that the combination of all these procedures could help prove the existence of specific non-thermal microwave effects in a scientifically meaningful way.The authors wish to thank the project MAT2017-86450-C4-1-R.García-Baños, B.; Jimenez-Reinosa, J.; Penaranda-Foix, FL.; Fernandez, JF.; Catalá Civera, JM. (2019). Temperature Assessment Of Microwave-Enhanced Heating Processes. Scientific Reports. 9:1-10. https://doi.org/10.1038/s41598-019-47296-0S1109Zhou, J. et al. A new type of power energy for accelerating chemical reactions: the nature of a microwave-driving force for accelerating chemical reactions. Sci. Rep. 6, 25149 (2016).Clark, D. E., Folz, D. C. & West, J. K. Processing materials with microwave energy. Mater. Sci. Eng. A287, 153–158 (2000).Thostenson, E. T. & Chou, T. W. Microwave processing: fundamentals and applications. Composites A30(9), 1055–1071 (1999).Çengel, Y. A. Green thermodynamics. Int. J. Energy Res. 31, 1088–1104 (2007).Adam, D. Out of the kitchen. Nature 421, 571–572 (2003).Horikoshi, S., Watanabe, T., Narita, A., Suzuki, Y. & Serpone, N. The electromagnetic wave energy effect(s) in microwave–assisted organic syntheses (MAOS). Sci. Rep. 8, 5151 (2018).Wada, Y. et al. Smelting magnesium metal using a microwave pidgeon method. Sci. Rep. 7, 46512 (2017).Kappe, C. O., Pieber, B. & Dallinger, D. Microwave effects in organic synthesis: Myth or reality? Angew. Chem., Int. Ed. 52, 1088–1094 (2013).Ma, J. Master equation analysis of thermal and nonthermal microwave effects. J. Phys. Chem. A. 120, 7989–7997 (2016).Mishra, R. R. & Sharma, A. K. Microwave–material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Comp. Part A. 81, 78–97 (2016).Sun, J., Wang, W. & Yue, Q. Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Materials. 9, 231 (2016).Liu, W. et al. Discussion on microwave-matter interaction mechanisms by in situ observation of “core-shell” microstructure during microwave sintering. Materials. 9, 120 (2016).Reinosa, J. J., García-Baños, B., Catalá-Civera, J. M. & Fernández, J. F. A step ahead on efficient microwave heating for Kaolinite. Appl. Clay Sci. 168, 237–243 (2019).Naito, A., Makino, Y., Tasei, Y. & Kawamura, I. Photoirradiation and microwave irradiation NMR spectroscopy in Experimental Approaches of NMR Spectroscopy (ed. The Nuclear Magnetic Resonance Society of Japan) 135-170 (Springer, 2017).Schmink, J. R. & Leadbeater, N. E. Probing “microwave effects” using Raman spectroscopy. Org Biomol Chem. 7(18), 3842–3846 (2009).Vaucher, S., Catala-Civera, J. M., Sarua, A., Pomeroy, J. & Kuball, M. Phase selectivity of microwave heating evidenced by Raman spectroscopy. J. Appl. Phys. 99, 113505 (2006).Von Hippel, A.R. in Dielectric Materials and Applications. 301–416 (Artech House, 1995)Garcia-Baños, B., Catala-Civera, J. M., Penaranda-Foix, F. L., Plaza-Gonzalez, P. & Llorens-Valles, G. In situ monitoring of microwave processing of materials at high temperatures through dielectric properties measurement. Materials 9, 349 (2016).Cuccurullo, G., Berardi, P. G., Carfagna, R. & Pierro, V. IR temperature measurements in microwave heating. Infrared Phys. Technol. 43, 145–150 (2002).Catala-Civera, J. M. et al. Dynamic measurement of dielectric properties of materials at high temperature during microwave heating in a dual mode cylindrical cavity. IEEE Trans. Microw. Theory Tech. 63, 2905–2914 (2015).Kappe, C. O. How to measure reaction temperature in microwave-heated transformations. Chem. Soc. Rev. 42, 4977–4990 (2013).Gangurde, L. S., Sturm, G. S. J., Devadiga, T. J., Stankiewicz, A. I. & Stefanidis, G. D. Complexity and challenges in noncontact high temperature measurements in microwave-assisted catalytic reactors. Ind. Eng. Chem. Res. 56, 13379–13391 (2017).Ramirez, A., Hueso, J. L., Mallada, R. & Santamaria, J. In situ temperature measurements in microwave-heated gas-solid catalytic systems. Detection of hot spots and solid-fluid temperature gradients in the ethylene epoxidation reaction. Chem. Eng. J. 316, 50–60 (2017).Sturm, G. S. J., Verweij, M. D., Van Gerven, T., Stankiewicz, A. I. & Stefanidis, G. D. On the effect of resonant microwave fields on temperature distribution in time and space. Int. J. Heat Mass Trans. 55, 3800–3811 (2012).van Gool, W. Phase transition behaviour as a guide for selecting solid electrolyte materials In Phase Transitions–1973, Proceedings of the Conference on Phase Transitions and Their Applications in Materials Science (eds. Henisch, H. K., Roy, R. & Cross, L. E.) 373–377 (Pergamon Press, 1973).Sabbah, R. et al. Reference materials for calorimetry and differential thermal analysis. Thermochim. Acta 331, 93–204 (1999).Zhong, Z. & Gallagher, P. K. Temperature calibration of a simultaneous TG/DTA apparatus. Thermochim. Acta 186, 199–204 (1991).Rao, S. R., Lingam, C. B., Rajesh, D., Vijayalakshmi, R. P. & Sunandana, C. S. Thermal and spectroscopy studies of Ag2SO4 and LiAgSO4. IOSR. J. Appl. Phys. 4-2, 39–43 (2013).Secco, R. A. & Secco, I. A. Structural and nonstructural factors in fast ion conduction in Ag2SO4 at high pressure. Phys. Rev. B 56(6), 3099–3104 (1997).Eysel, W., Breuer, K.H. Differential Scanning Calorimetry: Simultaneous temperature and calorimetric calibration In Analytical Calorimetry vol. 5 (eds. Jhonson, J.F & Gill, P.S.) 67–80 (Plenum Press, 1984).Graves, P. R., Hua, G., Myhra, S. & Thompson, J. G. The Raman modes of the Aurivillius phases: temperature and polarization dependence”. J. Sol. State Chem. 114, 112–122 (1995).Moure, A. Review and perspectives of Aurivillius structures as a lead free Piezoelectric system. Appl. Sci. 8(1), 62 (2018).Shulman, H. & Testorf, M. Damjanovic & Setter, D.N. Microstructure, electrical conductivity and piezoelectric properties of bismuth titanate. J. Am. Ceram. Soc. 79, 3124–3128 (1996). [12].Miyake, M. & Iwai, S. Phase transition of potassium sulfate, K2SO 4 (III); thermodynamical and phenomenological study. Phys Chem Minerals 7, 211 215 (1981).ASTM Standard C 965-81. Standard practice for measurement of viscosity of glass above the softening point in Annual book of ASTM standards, Vol. 15.02 (ASTM, 1990).Ehrt, D. & Keding, R. Electrical conductivity and viscosity of borosilicate glasses and melts. Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 50(3), 165–171 (2009).Grandjean, A., Malki, M., Simonnet, C., Manara, D. & Penelon, B. Correlation between electrical conductivity, viscosity, and structure in borosilicate glass-forming melts. Phys. Review B 75, 054112 (2007).Limbach, R., Rodrigues, B. P. & Wondraczek, L. Strain-rate sensitivity of glasses. J. of Non-Crystalline Solids 404, 124–134 (2014).García-Baños, B., Canós, A. J., Peñaranda-Foix, F. L. & Catalá-Civera, J. M. Non-invasive monitoring of polymer curing reactions by dielectrometry. IEEE Sensors Journal 11, 62–70 (2011).Núñez, L., Gómez-Barreiro, S., Gracia-Fernández, C. A. & Núñez, M. R. Use of the dielectric analysis to complement previous thermoanalytical studies on the system diglycidyl ether of bisphenol A/1,2 diamine cyclohexane. Polymer 45, 1167–1175 (2004).Lefebvre, D. R. et al. Dielectric analysis for in situ monitoring of gelatin renaturation and crosslinking. J. Appl. Polymer Sci. 101, 2765–2775 (2006).Olszak-Humienik, M. & Jablonski, M. Thermal behavior of natural dolomite. J Therm Anal Calorim 119, 2239–2248 (2015).Harrington, R. F. Time–Harmonic Electromagnetic Fields (Wiley, 2001)

    Enhanced Full-Wave Circuit Analysis for Modeling of a Split Cylinder Resonator

    Full text link
    [EN] An enhanced full-wave method based on circuit analysis is presented in this paper, where the whole set of modes TEmnp and TMmnp are taken into account. The modeling of a split cylinder resonator is done with two circuit networks of one and three ports, characterized by their generalized admittance matrix, which is computed making use of the mode matching method. The improved full-wave circuit method has been applied to the accurate determination of dielectric properties of materials. The proposed method has been validated through comparisons with other published models and also with measurements.This work was supported in part by the Ministerio de Economia y Competitividad-Spanish Government and in part by the European Regional Development Funds of European Union under Project SEDMICRON - TEC2015-70272-R (MINECO/FEDER). The work of D. Marqucs-Villarroya was supported by the Universitat Politccnica de Valencia through the Programa para la formacion de personal investigador de la UPV. The work of F.L. Penarada-Foix was supported by the Conselleria de Educacion of the Generalitat Valenciana (BEST/2016/012).Marqués-Villarroya, D.; Penaranda-Foix, FL.; García-Baños, B.; Catalá Civera, JM.; Gutiérrez Cano, JD. (2017). Enhanced Full-Wave Circuit Analysis for Modeling of a Split Cylinder Resonator. IEEE Transactions on Microwave Theory and Techniques. 65(4):1191-1202. https://doi.org/10.1109/TMTT.2016.2637932S1191120265

    Full-Wave Modal Analysis of a Novel Dielectrometer for Accurate Measurement of Complex Permittivity of High-Loss Liquids at Microwave Frequencies

    Full text link
    © 2018 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] A novel dielectrometer to measure the complex permittivity of high-loss liquids is presented. The geometry consists of a reentrant cavity with insertion holes, where the holder filled with liquid can be introduced readily. Radii of the insertion holes are large enough for a convenient pouring of the liquid. The electromagnetic analysis has been performed by a mixed mode-matching and circuit technique with the purpose of taking the high accuracy and fast convergence of the mode-matching and the flexibility and versatility of the circuit method. The convergence of the method is studied, and a procedure to estimate the result for an infinite number of modes is proposed. A calibration procedure is presented to minimize the error introduced by the numerical method. Mode charts are shown to analyze the behavior of resonant parameters for every mode. Some reference liquids are measured at different resonant frequencies, and the results are compared with those provided by other models of the literature.This work was supported in part by the "Programa de Ayudas de Investigacion y Desarrollo de la Universitat Politecnica de Valencia," in part by the Ministerio de Economia y Competitividad-Spanish Government under Project TEC2012-37532-C02-01, and in part by the European Regional Development Funds of European Union.Marqués-Villarroya, D.; Canós Marín, AJ.; Penaranda-Foix, FL.; García-Baños, B.; Catalá Civera, JM. (2018). Full-Wave Modal Analysis of a Novel Dielectrometer for Accurate Measurement of Complex Permittivity of High-Loss Liquids at Microwave Frequencies. IEEE Transactions on Microwave Theory and Techniques. 66(12):5760-5770. https://doi.org/10.1109/TMTT.2018.2881136S57605770661

    Evaluación del nivel de conocimiento de mujeres en edad fértil de 18 a 25 años sobre métodos de planificación familiar en unidad de salud especializada de Chalchuapa de Marzo a Agosto de 2020

    Get PDF
    La planificación familiar es un elemento muy importante para la salud por lo cual el objetivo de esta investigación fue conocer acerca del nivel de conocimiento de las usuarias de 18 a 25 años de la unidad de salud especializada de Chalchuapa

    Evidence of a new phase in gypsum-anhydrite transformations under microwave heating by in situ dielectric analysis and Raman spectroscopy

    Full text link
    [EN] Mineral transformations of the gypsum-anhydrite system under microwave heating have been studied using in situ dielectric thermal analysis (MW-DETA) and Raman spectroscopy simultaneously. The dielectric properties of samples that were measured under microwave heating provided thorough information about the dynamics of the gypsum-anhydrite system transformations and its significance from the mineralogical point of view. In particular, the MW-DETA technique revealed a new intermediate phase with a gamma-anhydrite structure. This phase corresponds to the soluble stage of gamma-anhydrite, and it is characterized by a high ionic charge inside the crystal channels. The complete sequence is gypsum -> 0.625-subhydrate -> bassanite -> hydro gamma-anhydrite -> anhydrous gamma-anhydrite -> beta-anhydrite. The transformations were also assessed using DSC, TG, DTA and dielectric measurements at room temperature, as well as other techniques including X-ray powder diffraction (XRPD) and high-temperature XRD (HT-XRD). Correlations between the dielectric properties with temperature and the rest of the techniques elucidated the heating mechanisms of this material under microwave energy during the different stages. The in situ combination of the MW-DETA and the Raman analysis appears to be a powerful technique, providing new insights about the mechanisms which govern the volumetric heating of this and other materials.López-Buendía, AM.; García-Baños, B.; Urquiola, MM.; Catalá Civera, JM.; Penaranda-Foix, FL. (2020). Evidence of a new phase in gypsum-anhydrite transformations under microwave heating by in situ dielectric analysis and Raman spectroscopy. Physical Chemistry Chemical Physics. 22(47):27713-27723. https://doi.org/10.1039/d0cp04926cS27713277232247A. C. Metaxas and R. J.Meredith , Industrial microwave heating , Peregrinus , London , 1983Mishra, R. R., & Sharma, A. K. (2016). Microwave–material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Composites Part A: Applied Science and Manufacturing, 81, 78-97. doi:10.1016/j.compositesa.2015.10.035Gutiérrez, J. D., Catalá-Civera, J. M., Bows, J., & Peñaranda-Foix, F. L. (2017). Dynamic measurement of dielectric properties of food snack pellets during microwave expansion. Journal of Food Engineering, 202, 1-8. doi:10.1016/j.jfoodeng.2017.01.021Kingman, S. W., & Rowson, N. A. (1998). Microwave treatment of minerals-a review. Minerals Engineering, 11(11), 1081-1087. doi:10.1016/s0892-6875(98)00094-6Kingman, S. W. (2006). Recent developments in microwave processing of minerals. International Materials Reviews, 51(1), 1-12. doi:10.1179/174328006x79472Lovás, M., Kováčová, M., Dimitrakis, G., Čuvanová, S., Znamenáčková, I., & Jakabský, Š. (2010). Modeling of microwave heating of andesite and minerals. International Journal of Heat and Mass Transfer, 53(17-18), 3387-3393. doi:10.1016/j.ijheatmasstransfer.2010.03.012S. M. J. Koleini and K.Barani in The development and application of microwave heating , ed. Wenbin C. , IntechOpen , London , 2012 , ch. 4, p. 79A. M. López-Buendía , B.García-Baños , J.Bastida , G.Llorens-Vallés , M. M.Urquiola and J. M.Catalá-Civera , presented at 3GCMEA, Cartagena, Spain, July 2016Reinosa, J. J., García-Baños, B., Catalá-Civera, J. M., & Fernández, J. F. (2019). A step ahead on efficient microwave heating for kaolinite. Applied Clay Science, 168, 237-243. doi:10.1016/j.clay.2018.11.001Kitchen, H. J., Vallance, S. R., Kennedy, J. L., Tapia-Ruiz, N., Carassiti, L., Harrison, A., … Gregory, D. H. (2013). Modern Microwave Methods in Solid-State Inorganic Materials Chemistry: From Fundamentals to Manufacturing. Chemical Reviews, 114(2), 1170-1206. doi:10.1021/cr4002353Sun, J., Wang, W., & Yue, Q. (2016). Review on Microwave-Matter Interaction Fundamentals and Efficient Microwave-Associated Heating Strategies. Materials, 9(4), 231. doi:10.3390/ma9040231Wu, L., Zhang, Y., Wang, F., Ma, W., Xie, T., & Huang, K. (2019). An On-Line System for High Temperature Dielectric Property Measurement of Microwave-Assisted Sintering Materials. Materials, 12(4), 665. doi:10.3390/ma12040665R. N. Clarke , A. P.Gregory , D.Cannell , M.Patrick , S.Wylie , I.Youngs and G.Hill , Technical Report, Institute of Measurement and Control/National Physical Laboratory, 2003Garcia-Baños, B., Catalá-Civera, J., Peñaranda-Foix, F., Plaza-González, P., & Llorens-Vallés, G. (2016). In Situ Monitoring of Microwave Processing of Materials at High Temperatures through Dielectric Properties Measurement. Materials, 9(5), 349. doi:10.3390/ma9050349García-Baños, B., Catalá-Civera, J. M., Sánchez, J. R., Navarrete, L., López-Buendía, A. M., & Schmidt, L. (2020). High Temperature Dielectric Properties of Iron- and Zinc-Bearing Products during Carbothermic Reduction by Microwave Heating. Metals, 10(5), 693. doi:10.3390/met10050693Catala-Civera, J. M., Canos, A. J., Plaza-Gonzalez, P., Gutierrez, J. D., Garcia-Banos, B., & Penaranda-Foix, F. L. (2015). Dynamic Measurement of Dielectric Properties of Materials at High Temperature During Microwave Heating in a Dual Mode Cylindrical Cavity. IEEE Transactions on Microwave Theory and Techniques, 63(9), 2905-2914. doi:10.1109/tmtt.2015.2453263Hildyard, R. C., Llana-Funez, S., Wheeler, J., Faulkner, D. R., & Prior, D. J. (2011). Electron Backscatter Diffraction (EBSD) Analysis of Bassanite Transformation Textures and Crystal Structure Produced from Experimentally Deformed and Dehydrated Gypsum. Journal of Petrology, 52(5), 839-856. doi:10.1093/petrology/egr004Azam, S. (2006). Study on the geological and engineering aspects of anhydrite/gypsum transition in the Arabian Gulf coastal deposits. Bulletin of Engineering Geology and the Environment, 66(2), 177-185. doi:10.1007/s10064-006-0053-2Tesárek, P., Drchalová, J., Kolísko, J., Rovnaníková, P., & Černý, R. (2007). Flue gas desulfurization gypsum: Study of basic mechanical, hydric and thermal properties. Construction and Building Materials, 21(7), 1500-1509. doi:10.1016/j.conbuildmat.2006.05.009Singh, M., & Garg, M. (2000). Making of anhydrite cement from waste gypsum. Cement and Concrete Research, 30(4), 571-577. doi:10.1016/s0008-8846(00)00209-xCharola, A. E., Pühringer, J., & Steiger, M. (2006). Gypsum: a review of its role in the deterioration of building materials. Environmental Geology, 52(2), 339-352. doi:10.1007/s00254-006-0566-9K. K. Kelley , C. T.Anderson and J. C.Southartd , USD Interior Tech, Paper 625Valimbe, P. (2002). Effects of water content and temperature on the crystallization behavior of FGD scrubber sludge. Fuel, 81(10), 1297-1304. doi:10.1016/s0016-2361(02)00045-5James, A. N., & Lupton, A. R. R. (1978). Gypsum and anhydrite in foundations of hydraulic structures. Géotechnique, 28(3), 249-272. doi:10.1680/geot.1978.28.3.249Ko, S., Olgaard, D. L., & Briegel, U. (1995). The transition from weakening to strengthening in dehydrating gypsum: Evolution of excess pore pressures. Geophysical Research Letters, 22(9), 1009-1012. doi:10.1029/95gl00886Anonymous Mineral Commodity Summaries 2019, Reston, VA, 2019W. Chun , S.Kim and K.Lee , ‘EuroDrying2011’, 2011Kasparaitė, D., Lukošenkinaitė, L., Valančius, Z., Kybartienė, N., & Leškevičienė, V. (2013). Microwave use of gypsum dehydration feasibility study. Chemical Technology, 63(1). doi:10.5755/j01.ct.63.1.4518Boeyens, J. C. A., & Ichharam, V. V. H. (2002). Redetermination of the crystal structure of calcium sulphate dihydrate, CaSO4 · 2H2O. Zeitschrift für Kristallographie - New Crystal Structures, 217(JG), 9-10. doi:10.1524/ncrs.2002.217.jg.9Schofield, P. F., Knight, K. S., & Stretton, I. C. (1996). Thermal expansion of gypsum investigated by neutron powder diffraction. American Mineralogist, 81(7-8), 847-851. doi:10.2138/am-1996-7-807Schmidt, H., Paschke, I., Freyer, D., & Voigt, W. (2011). Water channel structure of bassanite at high air humidity: crystal structure of CaSO4·0.625H2O. Acta Crystallographica Section B Structural Science, 67(6), 467-475. doi:10.1107/s0108768111041759Bezou, C., Nonat, A., Mutin, J.-C., Christensen, A. N., & Lehmann, M. S. (1995). Investigation of the Crystal Structure of γ-CaSO4, CaSO4 · 0.5 H2O, and CaSO4 · 0.6 H2O by Powder Diffraction Methods. Journal of Solid State Chemistry, 117(1), 165-176. doi:10.1006/jssc.1995.1260Christensen, A. N., Olesen, M., Cerenius, Y., & Jensen, T. R. (2008). Formation and Transformation of Five Different Phases in the CaSO4−H2O System: Crystal Structure of the Subhydrate β-CaSO4·0.5H2O and Soluble Anhydrite CaSO4. Chemistry of Materials, 20(6), 2124-2132. doi:10.1021/cm7027542Follner, S., Wolter, A., Preusser, A., Indris, S., Silber, C., & Follner, H. (2002). The Setting Behaviour of α- and β-CaSO4 · 0,5 H2O as a Function of Crystal Structure and Morphology. Crystal Research and Technology, 37(10), 1075-1087. doi:10.1002/1521-4079(200210)37:103.0.co;2-xMORRIS, R. J. (1963). X-ray Diffraction Identification of the Alpha- and Beta-forms of Calcium Sulphate Hemihydrate. Nature, 198(4887), 1298-1299. doi:10.1038/1981298a0Vellmer, C., Middendorf, B., & Singh, N. B. (2006). Hydration of α-hemihydrate in the presence of carboxylic acids. Journal of Thermal Analysis and Calorimetry, 86(3), 721-726. doi:10.1007/s10973-005-7224-4Prieto-Taboada, N., Larrañaga, A., Gómez-Laserna, O., Martínez-Arkarazo, I., Olazabal, M. A., & Madariaga, J. M. (2015). The relevance of the combination of XRD and Raman spectroscopy for the characterization of the CaSO4–H2O system compounds. Microchemical Journal, 122, 102-109. doi:10.1016/j.microc.2015.04.010Sipple, E.-M., Bracconi, P., Dufour, P., & Mutin, J.-C. (2001). Microstructural modifications resulting from the dehydration of gypsum. Solid State Ionics, 141-142, 447-454. doi:10.1016/s0167-2738(01)00755-xCarbone, M., Ballirano, P., & Caminiti, R. (2008). Kinetics of gypsum dehydration at reduced pressure: an energy dispersive X-ray diffraction study. European Journal of Mineralogy, 20(4), 621-627. doi:10.1127/0935-1221/2008/0020-1826A. M. López-Buendía , C.Suesta , J. M.Cuevas , M. M.Urquiola and J.Bastida , presented at 12th EMABM, 2009, 443Zhao, Z. M., Wang, C. J., Li, C. Q., & Zhang, X. M. (2013). On Experimental Study of Development Calcined Gypsum from Flue Gas Desulfurization by Microwave Technology. Applied Mechanics and Materials, 368-370, 780-784. doi:10.4028/www.scientific.net/amm.368-370.780Kirfel, A., & Will, G. (1980). Charge density in anhydrite, CaSO4, from X-ray and neutron diffraction measurements. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 36(12), 2881-2890. doi:10.1107/s0567740880010461Gracia, L., Beltrán, A., Errandonea, D., & Andrés, J. (2011). CaSO4 and Its Pressure-Induced Phase Transitions. A Density Functional Theory Study. Inorganic Chemistry, 51(3), 1751-1759. doi:10.1021/ic202056bCrichton, W. A., Parise, J. B., Antao, S. M., & Grzechnik, A. (2005). Evidence for monazite-, barite-, and AgMnO4(distorted barite)-type structures of CaSO4at high pressure and temperature. American Mineralogist, 90(1), 22-27. doi:10.2138/am.2005.1654Pedersen, B. F., & Semmingsen, D. (1982). Neutron diffraction refinement of the structure of gypsum, CaSO4.2H2O. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 38(4), 1074-1077. doi:10.1107/s0567740882004993De la Torre, Á. G., López-Olmo, M.-G., Álvarez-Rua, C., García-Granda, S., & Aranda, M. A. G. (2004). Structure and microstructure of gypsum and its relevance to Rietveld quantitative phase analyses. Powder Diffraction, 19(3), 240-246. doi:10.1154/1.1725254Hartman, P. (1989). On the unit cell dimensions and bond lengths of anhydrite. European Journal of Mineralogy, 1(5), 721-722. doi:10.1127/ejm/1/5/0721Morikawa, H., Minato, I., Tomita, T., & Iwai, S. (1975). Anhydrite: a refinement. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 31(8), 2164-2165. doi:10.1107/s0567740875007145Prieto-Taboada, N., Gómez-Laserna, O., Martínez-Arkarazo, I., Olazabal, M. Á., & Madariaga, J. M. (2014). Raman Spectra of the Different Phases in the CaSO4–H2O System. Analytical Chemistry, 86(20), 10131-10137. doi:10.1021/ac501932fAntao, S. M. (2011). Crystal-structure analysis of four mineral samples of anhydrite, CaSO4, using synchrotron high-resolution powder X-ray diffraction data. Powder Diffraction, 26(4), 326-330. doi:10.1154/1.3659285Borg, I. Y., & Smith, D. K. (1975). A high pressure polymorph of CaSO4. Contributions to Mineralogy and Petrology, 50(2), 127-133. doi:10.1007/bf00373332Mukhopadhyay, A., Cole, W. T. S., & Saykally, R. J. (2015). The water dimer I: Experimental characterization. Chemical Physics Letters, 633, 13-26. doi:10.1016/j.cplett.2015.04.016Kaatze, U. (1989). Complex permittivity of water as a function of frequency and temperature. Journal of Chemical & Engineering Data, 34(4), 371-374. doi:10.1021/je00058a001Ellison, W. J. (2007). Permittivity of Pure Water, at Standard Atmospheric Pressure, over the Frequency Range 0–25THz and the Temperature Range 0–100°C. Journal of Physical and Chemical Reference Data, 36(1), 1-18. doi:10.1063/1.2360986García-Baños, B., Reinosa, J. J., Peñaranda-Foix, F. L., Fernández, J. F., & Catalá-Civera, J. M. (2019). Temperature Assessment Of Microwave-Enhanced Heating Processes. Scientific Reports, 9(1). doi:10.1038/s41598-019-47296-0Gutierrez-Cano, J. D., Plaza-Gonzalez, P., Canos, A. J., Garcia-Banos, B., Catala-Civera, J. M., & Penaranda-Foix, F. L. (2020). A New Stand-Alone Microwave Instrument for Measuring the Complex Permittivity of Materials at Microwave Frequencies. IEEE Transactions on Instrumentation and Measurement, 69(6), 3595-3605. doi:10.1109/tim.2019.2941038Berenblut, B. J., Dawson, P., & Wilkinson, G. R. (1973). A comparison of the Raman spectra of anhydrite (CaSO4) and gypsum (CaSO4).2H2O). Spectrochimica Acta Part A: Molecular Spectroscopy, 29(1), 29-36. doi:10.1016/0584-8539(73)80005-4Simon, B., & Bienfait, M. (1965). Structure et mécanisme de croissance du gypse. Acta Crystallographica, 19(5), 750-756. doi:10.1107/s0365110x65004310Massaro, F. R., Rubbo, M., & Aquilano, D. (2010). Theoretical Equilibrium Morphology of Gypsum (CaSO4·2H2O). 1. A Syncretic Strategy to Calculate the Morphology of Crystals. Crystal Growth & Design, 10(7), 2870-2878. doi:10.1021/cg900660vKhasanov, R. A., Nizamutdinov, N. M., Khasanova, N. M., Gubaĭdullin, A. T., & Vinokurov, V. M. (2008). Low-temperature dehydration of gypsum single crystals. Crystallography Reports, 53(5), 806-811. doi:10.1134/s1063774508050143W. Smykatz-Kloss , K.Heide and W.Klinke in Handbook of Thermal Analysis and Calorimetry , ed. M. E. Brown and P. K. Gallagher , Elsevier , 2003 , ch. 11, vol. 2, p. 451Carvalho, M. T. M., Leles, M. I. G., & Tubino, R. M. C. (2008). TG and DSC studies on plaster residues as recycled material. Journal of Thermal Analysis and Calorimetry, 91(2), 621-625. doi:10.1007/s10973-006-8169-yB. Gacía-Baños , A. M.López-Buendía , C.Suesta , J. M.Catalá-Civera ., J.Jiménez Reinosa and J. F.Fernández , 15th International Conference on Microwave and High Frequency Heating , 2015, Krakow (Poland), p. 107Alford, N. M., Breeze, J., Wang, X., Penn, S. J., Dalla, S., Webb, S. J., … Aupi, X. (2001). Dielectric loss of oxide single crystals and polycrystalline analogues from 10 to 320 K. Journal of the European Ceramic Society, 21(15), 2605-2611. doi:10.1016/s0955-2219(01)00324-7Baker-Jarvis, J., & Kim, S. (2012). The Interaction of Radio-Frequency Fields with Dielectric Materials at Macroscopic to Mesoscopic Scales. Journal of Research of the National Institute of Standards and Technology, 117, 1. doi:10.6028/jres.117.00
    corecore