99 research outputs found

    Keys to the city : an integrative conceptual framework on avian urban filtering

    Get PDF
    Publisher Copyright: © 2022 The Author(s). Published by Oxford University Press.Urbanization represents a multi-dimensional ecological 'filter' for birds determined by a myriad of variables that can change over time. Birds colonising an urban system or staying in a habitat that has been recently urbanised need to overcome both the extrinsic (e.g. food predictability, human activities, and inter-specific interaction) and intrinsic filter variables, ranging from genetic to behavioural changes and/or adjustments. An increasing body of knowledge has identified the behavioural component as crucial for individuals facing the spatiotemporal dynamic urban filters, often after other traits and mechanisms have played their role. Through both developmental (i.e. variability in the expression of genes during ontogeny) and activation plasticity (i.e. alteration of behaviour as a result of individual experience), studies have shown that the identification of cues in novel systems - often determined by extrinsic factors - and learning processes, among other factors, have important impacts on decision-making and innovation. The latter are crucial behavioural traits for thriving in urban settings. Thus, we propose an integrative mechanistic framework based on the process experienced by birds who reach a city and manage to persist in the novel system (becoming urban 'utilisers') or those that dwell in an urbanised region who increase their fitness through behavioural responses and adaptations, leading to population persistence (becoming 'dwellers'). Future field research efforts ought not only to widen the range of focal species, regions, and temporal scales of studies, but also to assess behavioural responses in highly urbanised settings, given that much of our knowledge comes from studies performed in urban greenspaces. Additionally, experimental studies are needed to complement the evidence from field research and to determine causal links.Non peer reviewe

    The queen of the island : On the density and distribution of the Eurasian Collared-Dove (Streptopelia decaocto) in Cozumel

    Get PDF
    The Eurasian Collared-Dove (Streptopelia decaocto) is one of the most successful invasive bird species across the world. Worryingly, the invasive dove is a known reservoir of many diseases, some of which can potentially infect mammals (including human beings). Additionally, aggressive behaviors have been recorded toward other bird species resulting in territory and nest usurpation. Thus, the presence of this species poses an important risk for native species with similar habits, particularly in insular systems. Based on this, we carried out this study to assess the density and distribution of the Eurasian Collared-Dove in the island of Cozumel, as well as to evaluate the relationship between their abundance and the environmental characteristics of the places they inhabit. We estimated their distance-corrected densities in the island's largest town and performed an inverse distance weighting (IDW) interpolation to visualize their distribution. We performed a generalized linear model (GLM) to assess relationships between the environmental variables and the abundance of doves using a reduced model procedure. We obtained 137 records of doves present in 94% of all survey sites and an estimated density of 6.8 ind/ha, for a total of 6,670 doves in San Miguel de Cozumel. We did not find a spatial pattern of the dove's distribution on the urban setting, but we found an interaction between their abundances with tree cover and building height. Our findings, together with previous evidence of infection risk and aggressive behavior, make this species a threat to the native species communities of fragile ecosystems such as the island of Cozumel.Peer reviewe

    A Novel Approach for the Assessment of Cities through Ecosystem Integrity

    Get PDF
    To tackle urban heterogeneity and complexity, several indices have been proposed, commonly aiming to provide information for decision-makers. In this study, we propose a novel and customizable procedure for quantifying urban ecosystem integrity. Based on a citywide approach, we developed an easy-to-use index that contrasts physical and biological variables of urban ecosystems with a given reference system. The Urban Ecosystem Integrity Index (UEII) is the sum of the averages from the variables that make up its intensity of urbanization and biological components. We applied the UEII in a Mexican tropical city using land surface temperature, built cover, and the richness of native plants and birds. The overall ecosystem integrity of the city, having montane cloud, tropical dry, and temperate forests as reference systems, was low (−0.34 ± SD 0.32), showing that, beyond its biodiverse greenspace network, the built-up structure highly differs from the ecosystems of reference. The UEII showed to be a flexible and easy-to-calculate tool to evaluate ecosystem integrity for cities, allowing for comparisons between or among cities, as well as the sectors/regions within cities. If used properly, the index could become a useful tool for decision making and resource allocation at a city level

    A Novel Approach for the Assessment of Cities through Ecosystem Integrity

    Get PDF
    To tackle urban heterogeneity and complexity, several indices have been proposed, commonly aiming to provide information for decision-makers. In this study, we propose a novel and customizable procedure for quantifying urban ecosystem integrity. Based on a citywide approach, we developed an easy-to-use index that contrasts physical and biological variables of urban ecosystems with a given reference system. The Urban Ecosystem Integrity Index (UEII) is the sum of the averages from the variables that make up its intensity of urbanization and biological components. We applied the UEII in a Mexican tropical city using land surface temperature, built cover, and the richness of native plants and birds. The overall ecosystem integrity of the city, having montane cloud, tropical dry, and temperate forests as reference systems, was low (−0.34 ± SD 0.32), showing that, beyond its biodiverse greenspace network, the built-up structure highly differs from the ecosystems of reference. The UEII showed to be a flexible and easy-to-calculate tool to evaluate ecosystem integrity for cities, allowing for comparisons between or among cities, as well as the sectors/regions within cities. If used properly, the index could become a useful tool for decision making and resource allocation at a city level

    Bold or shy? Examining the risk-taking behavior and neophobia of invasive and non-invasive house sparrows

    Get PDF
    Bold or shy? Examining the risk-taking behavior and neophobia of invasive and non-invasive house sparrows. Behavior provides a useful framework for understanding specialization, with animal personality aiding our understanding of the invasiveness of birds. Invasions imply dispersion into unknown areas and could require changes in behavior or spatial clustering based on personality. Reduced neophobia and increased exploring behavior could allow individuals to colonize new areas as they test and use non-familiar resources. Here, we hypothesized that house sparrow (Passer domesticus) individuals from invasive populations would exhibit bolder behavior than in non-invasive populations. We assessed risk taking and neophobia in male house sparrows in Barcelona (where it is considered native) and in Mexico City (where it has become widely invasive), captured in two different habitats, urban and non-urban. We assessed latency to enter an experimental cage and to explore it, and latency to feed and feeding time in the presence of a novel object. We found that sparrows from Mexico City, both from urban and non-urban areas, were quicker to enter the experimental cage than the sparrows from Barcelona. The time it took the birds to start exploring the cage gave a similar result. We found no differences between cities or habitats in the latency to feed and feeding time while exposed to a novel object. Our results partially support the view that the invader populations from Mexico City are bolder than those from Barcelona. Behavior is an important component of plasticity and its variability may have an important effect on adaptation to local situations. Future studies should disentangle the underlying mechanisms that explain the different personalities found in populations of different regions, contrasting populations of different densities, and taking different food availability scenarios into account.Peer reviewe

    Geographic patterns of tree dispersal modes in Amazonia and their ecological correlates

    Get PDF
    Aim: To investigate the geographic patterns and ecological correlates in the geographic distribution of the most common tree dispersal modes in Amazonia (endozoochory, synzoochory, anemochory and hydrochory). We examined if the proportional abundance of these dispersal modes could be explained by the availability of dispersal agents (disperser-availability hypothesis) and/or the availability of resources for constructing zoochorous fruits (resource-availability hypothesis). Time period: Tree-inventory plots established between 1934 and 2019. Major taxa studied: Trees with a diameter at breast height (DBH) ≥ 9.55 cm. Location: Amazonia, here defined as the lowland rain forests of the Amazon River basin and the Guiana Shield. Methods: We assigned dispersal modes to a total of 5433 species and morphospecies within 1877 tree-inventory plots across terra-firme, seasonally flooded, and permanently flooded forests. We investigated geographic patterns in the proportional abundance of dispersal modes. We performed an abundance-weighted mean pairwise distance (MPD) test and fit generalized linear models (GLMs) to explain the geographic distribution of dispersal modes. Results: Anemochory was significantly, positively associated with mean annual wind speed, and hydrochory was significantly higher in flooded forests. Dispersal modes did not consistently show significant associations with the availability of resources for constructing zoochorous fruits. A lower dissimilarity in dispersal modes, resulting from a higher dominance of endozoochory, occurred in terra-firme forests (excluding podzols) compared to flooded forests. Main conclusions: The disperser-availability hypothesis was well supported for abiotic dispersal modes (anemochory and hydrochory). The availability of resources for constructing zoochorous fruits seems an unlikely explanation for the distribution of dispersal modes in Amazonia. The association between frugivores and the proportional abundance of zoochory requires further research, as tree recruitment not only depends on dispersal vectors but also on conditions that favour or limit seedling recruitment across forest types

    Geography and ecology shape the phylogenetic composition of Amazonian tree communities

    Get PDF
    AimAmazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types.LocationAmazonia.TaxonAngiosperms (Magnoliids; Monocots; Eudicots).MethodsData for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny.ResultsIn the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2 = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2 = 28%). A greater number of lineages were significant indicators of geographic regions than forest types.Main ConclusionNumerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions

    Geography and ecology shape the phylogenetic composition of Amazonian tree communities

    Get PDF
    Aim: Amazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types. Location: Amazonia. Taxon: Angiosperms (Magnoliids; Monocots; Eudicots). Methods: Data for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran\u27s eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny. Results: In the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2^{2} = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2^{2} = 28%). A greater number of lineages were significant indicators of geographic regions than forest types. Main Conclusion: Numerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions
    corecore