7,365 research outputs found

    Exploring jet-launching conditions for SFXTs

    Get PDF
    In the magneto-centrifugal mechanism for jet formation, accreting neutron stars are assumed to produce relativistic jets only if their surface magnetic field is weak enough (B∼108B \sim 10^8 G). However, the most common manifestation of neutron stars are pulsars, whose magnetic field distribution peaks at B∼1012B \sim 10^{12} G. If the neutron star magnetic field has at least this strength at birth, it must decay considerably before jets can be launched in binary systems. We study the magnetic field evolution of a neutron star that accretes matter from the wind of a high-mass stellar companion so that we can constrain the accretion rate and the impurities in the crust, which are necessary conditions for jet formation. We solved the induction equation for the diffusion and convection of the neutron star magnetic field confined to the crust, assuming spherical accretion in a simpliflied one-dimensional treatment. We incorporated state-of-the-art microphysics, including consistent thermal evolution profiles, and assumed two different neutron star cooling scenarios based on the superfluidity conditions at the core. We find that in this scenario, magnetic field decay at long timescales is governed mainly by the accretion rate, while the impurity content and thermal evolution of the neutron star play a secondary role. For accretion rates M˙≳10−10\dot{M}\gtrsim10^{-10} M⊙_{\odot} yr−1^{-1}, surface magnetic fields can decay up to four orders of magnitude in ∼\sim107^7 yr, which is the timescale imposed by the evolution of the high-mass stellar companion in these systems. Based on these results, we discuss the possibility of transient jet-launching in strong wind-accreting high-mass binary systems like supergiant fast X-ray transients.Comment: 8 pages, 8 figures. Accepted for publication in A&

    On the origin of two unidentified radio/X-ray sources discovered with XMM-Newton

    Get PDF
    We aim at clarifying the nature of the emission of two spatially related unidentified X-ray sources detected with XMM-Newton telescope at intermediate-low Galactic latitude. Observations reveal a point-like source aligned with elongated diffuse emission. The X-ray spectra are best-fitted by absorbed power laws with photon indices ~1.7 for the point-like and ~2.0 for the extended one. Both sources show nonthermal radio-continuum counterparts that might indicate a physical association. From the available data, we did not detect variability on the point-like source in several timescales. Two possible scenarios are analyzed: first, based on HI line absorption, assuming a Galactic origin, we infer a distance upper bound of <2 kpc, which poses a constraint on the height over the Galactic plane of <200 pc and on the linear size of the system of 10^32 erg/s and >7.5 x 10^32 erg/s, for the point-like and extended sources, respectively; second, an extra-Galactic nature is discussed, where the point-like source might be the core of a radio galaxy and the extended source its lobe. In this case, we compare derived fluxes, spectral indices, and spatial correlation with those typical from the radio galaxy population, showing the feasibility of this alternative astrophysical scenario. From the available observational evidence, we suggest that the most promising scenario to explain the nature of these sources is a system consisting of a one-sided radio galaxy, where the point-like source is an active galactic nucleus and the extended source corresponds to the emission from its lobe. Other possibilities include a PSR/PWN origin, where the radio/X-ray emission originates from the synchrotron cooling of relativistic particles in the PSR magnetic field or a casual alignment between two unrelated sources, such as an AGN core and a Galactic X-ray blob.Comment: 6 pages, 2 figures. Accepted for publication in Astronomy and Astrophysics (A&A

    Microwave Photon Detector in Circuit QED

    Get PDF
    Quantum optical photodetection has occupied a central role in understanding radiation-matter interactions. It has also contributed to the development of atomic physics and quantum optics, including applications to metrology, spectroscopy, and quantum information processing. The quantum microwave regime, originally explored using cavities and atoms, is seeing a novel boost with the generation of nonclassical propagating fields in circuit quantum electrodynamics (QED). This promising field, involving potential developments in quantum information with microwave photons, suffers from the absence of photodetectors. Here, we design a metamaterial composed of discrete superconducting elements that implements a high-efficiency microwave photon detector. Our design consists of a microwave guide coupled to an array of metastable quantum circuits, whose internal states are irreversibly changed due to the absorption of photons. This proposal can be widely applied to different physical systems and can be generalized to implement a microwave photon counter.Comment: accepted in Phys. Rev. Let

    Estudio mineralógico de las arcillas cerámicas de Pereruela (Zamora)

    Get PDF
    Trabajo financiado por el Instituto de Estudios Zamoranos Florián de Ocampo.Peer reviewe

    IEO Studies on discards and By-catch of the Shrimper Industrial Fleet in West Africa

    Get PDF
    Studies on discards and by-catch on the shrimper industrial fleet in West Africa (Mauritania and Guinea Bissau)(IEO Program of Scientific observations onboard. 2010 and 2011

    Effect of nutrient input frequency on the structure and dynamics of the marine pelagic community: A modeling approach

    Get PDF
    33 páginas, 9 figuras, 2 tablas.An analysis of the induced changes in both total productivity and community structure as a consequence of different pulsed nutrient inputs has been made by using two different ecosystem modeling tools. One was a modified version of the N-based model proposed by Fasham et al. (1990) for pelagic ecosystems and the other the plankton functional type model by Vichi et al. (2007). Both models lead to higher total biomass production with a pulsed nutrient input compared to a continuous supply, affecting both phytoplankton and zooplankton. Detailed responses are, however, different among plankton groups depending on the frequency of pulsed nutrient input and the complexity of the model. The differences in biomass production were higher for an oscillation period of 150-170 days following a sinusoidal supply pattern. A tidal mixing-induced nutrient supply was also simulated by using both models and a larger biomass increment was observed compared to that obtained with the sinusoidal pattern. Finally, a theoretical application of this approach to the pelagic ecosystem of the North Western Alboran Sea shows a preferential selection of diatoms and larger zooplankton under discontinuous nutrient inputs.This work was funded by the Spanish National Research Program, Project; CTM2005–08142-C03–01. D.M. was supported by the Spanish Postdoc Fellowship Program and E.R. by a grant from the Spanish FPU fellowship.Peer reviewe
    • …
    corecore