36 research outputs found
Flexible and Conductive Bioelectrodes Based on Chitosan-Carbon Black Membranes: Towards the Development of Wearable Bioelectrodes
[EN] Wearable sensors for non-invasive monitoring constitute a growing technology in many industrial fields, such as clinical or sport monitoring. However, one of the main challenges in wearable sensing is the development of bioelectrodes via the use of flexible and stretchable materials capable of maintaining conductive and biocompatible properties simultaneously. In this study, chitosan-carbon black (CH-CB) membranes have been synthesized using a straightforward and versatile strategy and characterized in terms of their composition and their electrical and mechanical properties. In this sense, CH-CB membranes showed good conductivity and mechanical resistance thanks to the presence of carbon black, which decreases the insulating behavior of chitosan, while flexibility and biocompatibility are maintained due to the dual composition of the membrane. Thus, flexible and biocompatible conductive bioelectrodes have been developed by the combined use of CH and CB without the use of toxic reagents, extra energy input, or long reaction times. The membranes were modified using the enzymes Glucose Oxidase and Laccase in order to develop flexible and biocompatible bioelectrodes for enzymatic glucose biofuel cells (BFCs) and glucose detection. A BFC assembled using the flexible bioelectrodes developed was able to deliver 15 mu W cm(-2), using just 1 mM glucose as biofuel, and up to 21.3 mu W center dot cm(-2) with higher glucose concentration. Additionally, the suitability of the CH-CB membranes to be used as a glucose sensor in a linear range from 100 to 600 mu M with a limit of detection (LOD) of 76 mu M has been proven. Such demonstrations for energy harvesting and sensing capabilities of the developed membrane pave the way for their use in wearable sensing and energy harvesting technologies in the clinical field due to their good mechanical, electrical, and biocompatible properties.This work has been supported by the Instituto Valenciano de Competitividad Empresarial (IVACE) in accordance with the IMAMCL/2020/1 agreement and within the framework of the BioSensCell project.Buaki-Sogo, M.; García-Carmona, L.; Gil Agustí, MT.; García Pellicer, M.; Quijano-Lopez, A. (2021). Flexible and Conductive Bioelectrodes Based on Chitosan-Carbon Black Membranes: Towards the Development of Wearable Bioelectrodes. Nanomaterials. 11(8):1-17. https://doi.org/10.3390/nano11082052S11711
Sustainable Carbon as Efficient Support for Metal-Based Nanocatalyst: Applications in Energy Harvesting and Storage
[EN] Sustainable activated carbon can be obtained from the pyrolysis/activation of biomass wastes coming from different origins. Carbon obtained in this way shows interesting properties, such as high surface area, electrical conductivity, thermal and chemical stability, and porosity. These characteristics among others, such as a tailored pore size distribution and the possibility of functionalization, lead to an increased use of activated carbons in catalysis. The use of activated carbons from biomass origins is a step forward in the development of more sustainable processes enhancing material recycling and reuse in the frame of a circular economy. In this article, a perspective of different heterogeneous catalysts based on sustainable activated carbon from biomass origins will be analyzed focusing on their properties and catalytic performance for determined energy-related applications. In this way, the article aims to give the reader a scope of the potential of these tailor-made sustainable materials as a support in heterogeneous catalysis and future developments needed to improve catalyst performance. The selected applications are those related with H2 energy and the production of biomethane for energy through CO2 methanation.This research was funded by the Centro de Desarrollo Tecnologico Industrial-CDTI (ALMAGRID Project-CER-20191006), by the Instituto Valenciano de Competitividad Empresarial-IVACE-FEDER (BIO3 Project-IMDEEA/2019/44) and by the Agencia Valenciana de Investigacion-AVI (REWACER Project INNEST00/19/050).Buaki-Sogo, M.; Zubizarreta Saenz De Zaitegui, L.; García Pellicer, M.; Quijano-Lopez, A. (2020). Sustainable Carbon as Efficient Support for Metal-Based Nanocatalyst: Applications in Energy Harvesting and Storage. Molecules. 25(14):1-17. https://doi.org/10.3390/molecules25143123S1172514Updated Bioeconomy Strategyhttps://ec.europa.eu/knowledge4policy/node/34337_esSharma, H. K., Xu, C., & Qin, W. (2017). Biological Pretreatment of Lignocellulosic Biomass for Biofuels and Bioproducts: An Overview. Waste and Biomass Valorization, 10(2), 235-251. doi:10.1007/s12649-017-0059-yGonzález-García, S., Gullón, B., Rivas, S., Feijoo, G., & Moreira, M. T. (2016). Environmental performance of biomass refining into high-added value compounds. Journal of Cleaner Production, 120, 170-180. doi:10.1016/j.jclepro.2016.02.015Liu, W.-J., Jiang, H., & Yu, H.-Q. (2019). Emerging applications of biochar-based materials for energy storage and conversion. Energy & Environmental Science, 12(6), 1751-1779. doi:10.1039/c9ee00206eManeerung, T., Liew, J., Dai, Y., Kawi, S., Chong, C., & Wang, C.-H. (2016). Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies. Bioresource Technology, 200, 350-359. doi:10.1016/j.biortech.2015.10.047Hu, B., Wang, K., Wu, L., Yu, S.-H., Antonietti, M., & Titirici, M.-M. (2010). Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass. Advanced Materials, 22(7), 813-828. doi:10.1002/adma.200902812Xiu, S., Shahbazi, A., & Li, R. (2017). Characterization, Modification and Application of Biochar for Energy Storage and Catalysis: A Review. Trends in Renewable Energy, 3(1), 86-101. doi:10.17737/tre.2017.3.1.0033Khezami, L., Chetouani, A., Taouk, B., & Capart, R. (2005). Production and characterisation of activated carbon from wood components in powder: Cellulose, lignin, xylan. Powder Technology, 157(1-3), 48-56. doi:10.1016/j.powtec.2005.05.009Contescu, C., Adhikari, S., Gallego, N., Evans, N., & Biss, B. (2018). Activated Carbons Derived from High-Temperature Pyrolysis of Lignocellulosic Biomass. C, 4(3), 51. doi:10.3390/c4030051IOANNIDOU, O., & ZABANIOTOU, A. (2007). Agricultural residues as precursors for activated carbon production—A review. Renewable and Sustainable Energy Reviews, 11(9), 1966-2005. doi:10.1016/j.rser.2006.03.013Namaalwa, J., Sankhayan, P. L., & Hofstad, O. (2007). A dynamic bio-economic model for analyzing deforestation and degradation: An application to woodlands in Uganda. Forest Policy and Economics, 9(5), 479-495. doi:10.1016/j.forpol.2006.01.001Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 19(1), 191-215. doi:10.1007/s11157-020-09523-3Lee, J., Kim, K.-H., & Kwon, E. E. (2017). Biochar as a Catalyst. Renewable and Sustainable Energy Reviews, 77, 70-79. doi:10.1016/j.rser.2017.04.002Prati, L., Bergna, D., Villa, A., Spontoni, P., Bianchi, C. L., Hu, T., … Lassi, U. (2018). Carbons from second generation biomass as sustainable supports for catalytic systems. Catalysis Today, 301, 239-243. doi:10.1016/j.cattod.2017.03.007Shen, Y., Zhao, P., & Shao, Q. (2014). Porous silica and carbon derived materials from rice husk pyrolysis char. Microporous and Mesoporous Materials, 188, 46-76. doi:10.1016/j.micromeso.2014.01.005Azargohar, R., & Dalai, A. K. (2008). Steam and KOH activation of biochar: Experimental and modeling studies. Microporous and Mesoporous Materials, 110(2-3), 413-421. doi:10.1016/j.micromeso.2007.06.047Weber, K., & Quicker, P. (2018). Properties of biochar. Fuel, 217, 240-261. doi:10.1016/j.fuel.2017.12.054Lam, E., & Luong, J. H. T. (2014). Carbon Materials as Catalyst Supports and Catalysts in the Transformation of Biomass to Fuels and Chemicals. ACS Catalysis, 4(10), 3393-3410. doi:10.1021/cs5008393Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069. doi:10.1515/pac-2014-1117Jagiello, J., Kenvin, J., Celzard, A., & Fierro, V. (2019). Enhanced resolution of ultra micropore size determination of biochars and activated carbons by dual gas analysis using N2 and CO2 with 2D-NLDFT adsorption models. Carbon, 144, 206-215. doi:10.1016/j.carbon.2018.12.028Jagiello, J., Kenvin, J., Ania, C. O., Parra, J. B., Celzard, A., & Fierro, V. (2020). Exploiting the adsorption of simple gases O2 and H2 with minimal quadrupole moments for the dual gas characterization of nanoporous carbons using 2D-NLDFT models. Carbon, 160, 164-175. doi:10.1016/j.carbon.2020.01.013Buaki-Sogo, M., Garcia, H., & Aprile, C. (2015). Imidazolium-based silica microreactors for the efficient conversion of carbon dioxide. Catalysis Science & Technology, 5(2), 1222-1230. doi:10.1039/c4cy01258eBuaki-Sogó, M., Vivian, A., Bivona, L. A., García, H., Gruttadauria, M., & Aprile, C. (2016). Imidazolium functionalized carbon nanotubes for the synthesis of cyclic carbonates: reducing the gap between homogeneous and heterogeneous catalysis. Catalysis Science & Technology, 6(24), 8418-8427. doi:10.1039/c6cy01068gSomerville, M., & Jahanshahi, S. (2015). The effect of temperature and compression during pyrolysis on the density of charcoal made from Australian eucalypt wood. Renewable Energy, 80, 471-478. doi:10.1016/j.renene.2015.02.013Brewer, C. E., Chuang, V. J., Masiello, C. A., Gonnermann, H., Gao, X., Dugan, B., … Davies, C. A. (2014). New approaches to measuring biochar density and porosity. Biomass and Bioenergy, 66, 176-185. doi:10.1016/j.biombioe.2014.03.059Anovitz, L. M., & Cole, D. R. (2015). Characterization and Analysis of Porosity and Pore Structures. Reviews in Mineralogy and Geochemistry, 80(1), 61-164. doi:10.2138/rmg.2015.80.04Wang, R., Sang, S., Zhu, D., Liu, S., & Yu, K. (2017). Pore characteristics and controlling factors of the Lower Cambrian Hetang Formation shale in Northeast Jiangxi, China. Energy Exploration & Exploitation, 36(1), 43-65. doi:10.1177/0144598717723814Pasel, J., Käßner, P., Montanari, B., Gazzano, M., Vaccari, A., Makowski, W., … Papp, H. (1998). Transition metal oxides supported on active carbons as low temperature catalysts for the selective catalytic reduction (SCR) of NO with NH3. Applied Catalysis B: Environmental, 18(3-4), 199-213. doi:10.1016/s0926-3373(98)00033-2Bazan, A., Nowicki, P., Półrolniczak, P., & Pietrzak, R. (2016). Thermal analysis of activated carbon obtained from residue after supercritical extraction of hops. Journal of Thermal Analysis and Calorimetry, 125(3), 1199-1204. doi:10.1007/s10973-016-5419-5Rodríguez-reinoso, F. (1998). The role of carbon materials in heterogeneous catalysis. Carbon, 36(3), 159-175. doi:10.1016/s0008-6223(97)00173-5Liu, W.-J., Jiang, H., & Yu, H.-Q. (2015). Development of Biochar-Based Functional Materials: Toward a Sustainable Platform Carbon Material. Chemical Reviews, 115(22), 12251-12285. doi:10.1021/acs.chemrev.5b00195Umeyama, T., & Imahori, H. (2012). Photofunctional Hybrid Nanocarbon Materials. The Journal of Physical Chemistry C, 117(7), 3195-3209. doi:10.1021/jp309149sNishihara, H., & Kyotani, T. (2012). Templated Nanocarbons for Energy Storage. Advanced Materials, 24(33), 4473-4498. doi:10.1002/adma.201201715Zhang, L., Xiao, J., Wang, H., & Shao, M. (2017). Carbon-Based Electrocatalysts for Hydrogen and Oxygen Evolution Reactions. ACS Catalysis, 7(11), 7855-7865. doi:10.1021/acscatal.7b02718Borenstein, A., Hanna, O., Attias, R., Luski, S., Brousse, T., & Aurbach, D. (2017). Carbon-based composite materials for supercapacitor electrodes: a review. Journal of Materials Chemistry A, 5(25), 12653-12672. doi:10.1039/c7ta00863eDai, L., Xue, Y., Qu, L., Choi, H.-J., & Baek, J.-B. (2015). Metal-Free Catalysts for Oxygen Reduction Reaction. Chemical Reviews, 115(11), 4823-4892. doi:10.1021/cr5003563Zhang, C., Lv, W., Tao, Y., & Yang, Q.-H. (2015). Towards superior volumetric performance: design and preparation of novel carbon materials for energy storage. Energy & Environmental Science, 8(5), 1390-1403. doi:10.1039/c5ee00389jMian, M. M., & Liu, G. (2018). Recent progress in biochar-supported photocatalysts: synthesis, role of biochar, and applications. RSC Advances, 8(26), 14237-14248. doi:10.1039/c8ra02258eXiong, X., Yu, I. K. M., Cao, L., Tsang, D. C. W., Zhang, S., & Ok, Y. S. (2017). A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control. Bioresource Technology, 246, 254-270. doi:10.1016/j.biortech.2017.06.163Liu, J., Jiang, J., Meng, Y., Aihemaiti, A., Xu, Y., Xiang, H., … Chen, X. (2020). Preparation, environmental application and prospect of biochar-supported metal nanoparticles: A review. Journal of Hazardous Materials, 388, 122026. doi:10.1016/j.jhazmat.2020.122026Xia, Y., Yang, Z., & Zhu, Y. (2013). Porous carbon-based materials for hydrogen storage: advancement and challenges. Journal of Materials Chemistry A, 1(33), 9365. doi:10.1039/c3ta10583kBack, C.-K., Sandí, G., Prakash, J., & Hranisavljevic, J. (2006). Hydrogen Sorption on Palladium-Doped Sepiolite-Derived Carbon Nanofibers. The Journal of Physical Chemistry B, 110(33), 16225-16231. doi:10.1021/jp061925pBhat, V. V., Contescu, C. I., & Gallego, N. C. (2010). Kinetic effect of Pd additions on the hydrogen uptake of chemically-activated ultramicroporous carbon. Carbon, 48(8), 2361-2364. doi:10.1016/j.carbon.2010.02.025Cheon, Y. E., & Suh, M. P. (2009). Enhanced Hydrogen Storage by Palladium Nanoparticles Fabricated in a Redox-Active Metal-Organic Framework. Angewandte Chemie International Edition, 48(16), 2899-2903. doi:10.1002/anie.200805494Dufour, A., Celzard, A., Fierro, V., Broust, F., Courson, C., Zoulalian, A., & Rouzaud, J. N. (2015). Catalytic conversion of methane over a biomass char for hydrogen production: deactivation and regeneration by steam gasification. Applied Catalysis A: General, 490, 170-180. doi:10.1016/j.apcata.2014.10.038Dufour, A., Valin, S., Castelli, P., Thiery, S., Boissonnet, G., Zoulalian, A., & Glaude, P.-A. (2009). Mechanisms and Kinetics of Methane Thermal Conversion in a Syngas. Industrial & Engineering Chemistry Research, 48(14), 6564-6572. doi:10.1021/ie900343bMarshall, J. (2014). Solar energy: Springtime for the artificial leaf. Nature, 510(7503), 22-24. doi:10.1038/510022aLin, Y., Pan, Y., & Zhang, J. (2017). CoP nanorods decorated biomass derived N, P co-doped carbon flakes as an efficient hybrid catalyst for electrochemical hydrogen evolution. Electrochimica Acta, 232, 561-569. doi:10.1016/j.electacta.2017.03.042Liu, X., Zhang, M., Yu, D., Li, T., Wan, M., Zhu, H., … Yao, J. (2016). Functional materials from nature: honeycomb-like carbon nanosheets derived from silk cocoon as excellent electrocatalysts for hydrogen evolution reaction. Electrochimica Acta, 215, 223-230. doi:10.1016/j.electacta.2016.08.091Cui, W., Liu, Q., Xing, Z., Asiri, A. M., Alamry, K. A., & Sun, X. (2015). MoP nanosheets supported on biomass-derived carbon flake: One-step facile preparation and application as a novel high-active electrocatalyst toward hydrogen evolution reaction. Applied Catalysis B: Environmental, 164, 144-150. doi:10.1016/j.apcatb.2014.09.016Lai, F., Miao, Y.-E., Huang, Y., Zhang, Y., & Liu, T. (2015). Nitrogen-Doped Carbon Nanofiber/Molybdenum Disulfide Nanocomposites Derived from Bacterial Cellulose for High-Efficiency Electrocatalytic Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 8(6), 3558-3566. doi:10.1021/acsami.5b06274Chen, W.-F., Iyer, S., Iyer, S., Sasaki, K., Wang, C.-H., Zhu, Y., … Fujita, E. (2013). Biomass-derived electrocatalytic composites for hydrogen evolution. Energy & Environmental Science, 6(6), 1818. doi:10.1039/c3ee40596fCarmo, M., Fritz, D. L., Mergel, J., & Stolten, D. (2013). A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, 38(12), 4901-4934. doi:10.1016/j.ijhydene.2013.01.151Benck, J. D., Chen, Z., Kuritzky, L. Y., Forman, A. J., & Jaramillo, T. F. (2012). Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity. ACS Catalysis, 2(9), 1916-1923. doi:10.1021/cs300451qKibsgaard, J., & Jaramillo, T. F. (2014). Molybdenum Phosphosulfide: An Active, Acid-Stable, Earth-Abundant Catalyst for the Hydrogen Evolution Reaction. Angewandte Chemie International Edition, 53(52), 14433-14437. doi:10.1002/anie.201408222Yuan, W., Wang, X., Zhong, X., & Li, C. M. (2016). CoP Nanoparticles in Situ Grown in Three-Dimensional Hierarchical Nanoporous Carbons as Superior Electrocatalysts for Hydrogen Evolution. ACS Applied Materials & Interfaces, 8(32), 20720-20729. doi:10.1021/acsami.6b05304Abghoui, Y., & Skúlason, E. (2017). Hydrogen Evolution Reaction Catalyzed by Transition-Metal Nitrides. The Journal of Physical Chemistry C, 121(43), 24036-24045. doi:10.1021/acs.jpcc.7b06811Humagain, G., MacDougal, K., MacInnis, J., Lowe, J. M., Coridan, R. H., MacQuarrie, S., & Dasog, M. (2018). Highly Efficient, Biochar-Derived Molybdenum Carbide Hydrogen Evolution Electrocatalyst. Advanced Energy Materials, 8(29), 1801461. doi:10.1002/aenm.201801461Vrubel, H., & Hu, X. (2012). Molybdenum Boride and Carbide Catalyze Hydrogen Evolution in both Acidic and Basic Solutions. Angewandte Chemie International Edition, 51(51), 12703-12706. doi:10.1002/anie.201207111Miao, M., Pan, J., He, T., Yan, Y., Xia, B. Y., & Wang, X. (2017). Molybdenum Carbide-Based Electrocatalysts for Hydrogen Evolution Reaction. Chemistry - A European Journal, 23(46), 10947-10961. doi:10.1002/chem.201701064Popczun, E. J., McKone, J. R., Read, C. G., Biacchi, A. J., Wiltrout, A. M., Lewis, N. S., & Schaak, R. E. (2013). Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 135(25), 9267-9270. doi:10.1021/ja403440eCallejas, J. F., McEnaney, J. M., Read, C. G., Crompton, J. C., Biacchi, A. J., Popczun, E. J., … Schaak, R. E. (2014). Electrocatalytic and Photocatalytic Hydrogen Production from Acidic and Neutral-pH Aqueous Solutions Using Iron Phosphide Nanoparticles. ACS Nano, 8(11), 11101-11107. doi:10.1021/nn5048553Tian, J., Liu, Q., Cheng, N., Asiri, A. M., & Sun, X. (2014). Self-Supported Cu3P Nanowire Arrays as an Integrated High-Performance Three-Dimensional Cathode for Generating Hydrogen from Water. Angewandte Chemie International Edition, 53(36), 9577-9581. doi:10.1002/anie.201403842Li, J.-S., Wang, Y., Liu, C.-H., Li, S.-L., Wang, Y.-G., Dong, L.-Z., … Lan, Y.-Q. (2016). Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nature Communications, 7(1). doi:10.1038/ncomms11204An, K., Xu, X., & Liu, X. (2017). Mo2C-Based Electrocatalyst with Biomass-Derived Sulfur and Nitrogen Co-Doped Carbon as a Matrix for Hydrogen Evolution and Organic Pollutant Removal. ACS Sustainable Chemistry & Engineering, 6(1), 1446-1455. doi:10.1021/acssuschemeng.7b03882Zhang, Y., Zuo, L., Zhang, L., Huang, Y., Lu, H., Fan, W., & Liu, T. (2016). Cotton Wool Derived Carbon Fiber Aerogel Supported Few-Layered MoSe2 Nanosheets As Efficient Electrocatalysts for Hydrogen Evolution. ACS Applied Materials & Interfaces, 8(11), 7077-7085. doi:10.1021/acsami.5b12772Zhu, Y. G., Wang, X., Jia, C., Yang, J., & Wang, Q. (2016). Redox-Mediated ORR and OER Reactions: Redox Flow Lithium Oxygen Batteries Enabled with a Pair of Soluble Redox Catalysts. ACS Catalysis, 6(9), 6191-6197. doi:10.1021/acscatal.6b01478Gong, K., Du, F., Xia, Z., Durstock, M., & Dai, L. (2009). Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction. Science, 323(5915), 760-764. doi:10.1126/science.1168049Shao, M., Chang, Q., Dodelet, J.-P., & Chenitz, R. (2016). Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. Chemical Reviews, 116(6), 3594-3657. doi:10.1021/acs.chemrev.5b00462Zhang, Z., Gao, X., Dou, M., Ji, J., & Wang, F. (2017). Biomass Derived N-Doped Porous Carbon Supported Single Fe Atoms as Superior Electrocatalysts for Oxygen Reduction. Small, 13(22), 1604290. doi:10.1002/smll.201604290Dong, Y., Zheng, L., Deng, Y., Liu, L., Zeng, J., Li, X., & Liao, S. (2018). Enhancement of Oxygen Reduction Performance of Biomass-Derived Carbon through Co-Doping with Early Transition Metal. Journal of The Electrochemical Society, 165(15), J3148-J3156. doi:10.1149/2.0201815jesYang, L., Zeng, X., Wang, D., & Cao, D. (2018). Biomass-derived FeNi alloy and nitrogen-codoped porous carbons as highly efficient oxygen reduction and evolution bifunctional electrocatalysts for rechargeable Zn-air battery. Energy Storage Materials, 12, 277-283. doi:10.1016/j.ensm.2018.02.011Liu, F., Peng, H., Qiao, X., Fu, Z., Huang, P., & Liao, S. (2014). High-performance doped carbon electrocatalyst derived from soybean biomass and promoted by zinc chloride. International Journal of Hydrogen Energy, 39(19), 10128-10134. doi:10.1016/j.ijhydene.2014.04.176Xiong, L., Chen, J.-J., Huang, Y.-X., Li, W.-W., Xie, J.-F., & Yu, H.-Q. (2015). An oxygen reduction catalyst derived from a robust Pd-reducing bacterium. Nano Energy, 12, 33-42. doi:10.1016/j.nanoen.2014.11.065Wang, G., Deng, Y., Yu, J., Zheng, L., Du, L., Song, H., & Liao, S. (2017). From Chlorella to Nestlike Framework Constructed with Doped Carbon Nanotubes: A Biomass-Derived, High-Performance, Bifunctional Oxygen Reduction/Evolution Catalyst. ACS Applied Materials & Interfaces, 9(37), 32168-32178. doi:10.1021/acsami.7b10668Lee, W. J., Li, C., Prajitno, H., Yoo, J., Patel, J., Yang, Y., & Lim, S. (2021). Recent trend in thermal catalytic low temperature CO2 methanation: A critical review. Catalysis Today, 368, 2-19. doi:10.1016/j.cattod.2020.02.017Ma, S., Tan, Y., & Han, Y. (2011). Methanation of syngas over coral reef-like Ni/Al2O3 catalysts. Journal of Natural Gas Chemistry, 20(4), 435-440. doi:10.1016/s1003-9953(10)60192-2Gao, J., Liu, Q., Gu, F., Liu, B., Zhong, Z., & Su, F. (2015). Recent advances in methanation catalysts for the production of synthetic natural gas. RSC Advances, 5(29), 22759-22776. doi:10.1039/c4ra16114aBailera, M., Lisbona, P., Romeo, L. M., & Espatolero, S. (2017). Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2. Renewable and Sustainable Energy Reviews, 69, 292-312. doi:10.1016/j.rser.2016.11.130Aryal, N., Kvist, T., Ammam, F., Pant, D., & Ottosen, L. D. M. (2018). An overview of microbial biogas enrichment. Bioresource Technology, 264, 359-369. doi:10.1016/j.biortech.2018.06.013Thema, M., Weidlich, T., Hörl, M., Bellack, A., Mörs, F., Hackl, F., … Sterner, M. (2019). Biological CO2-Methanation: An Approach to Standardization. Energies, 12(9), 1670. doi:10.3390/en12091670Thema, M., Bauer, F., & Sterner, M. (2019). Power-to-Gas: Electrolysis and methanation status review. Renewable and Sustainable Energy Reviews, 112, 775-787. doi:10.1016/j.rser.2019.06.030Marques Mota, F., & Kim, D. H. (2019). From CO2methanation to ambitious long-chain hydrocarbons: alternative fuels paving the path to sustainability. Chemical Society Reviews, 48(1), 205-259. doi:10.1039/c8cs00527cVariava, M. F., Church, T. L., Noorbehesht, N., Harris, A. T., & Minett, A. I. (2015). Carbon-supported gas-cleaning catalysts enable syn gas methanation at atmospheric pressure. Catalysis Science & Technology, 5(1), 515-524. doi:10.1039/c4cy00696hLi, J., Zhou, Y., Xiao, X., Wang, W., Wang, N., Qian, W., & Chu, W. (2018). Regulation of Ni–CNT Interaction on Mn-Promoted Nickel Nanocatalysts Supported on Oxygenated CNTs for CO2 Selective Hydrogenation. ACS Applied Materials & Interfaces, 10(48), 41224-41236. doi:10.1021/acsami.8b04220Swalus, C., Jacquemin, M., Poleunis, C., Bertrand, P., & Ruiz, P. (2012). CO2 methanation on Rh/γ-Al2O3 catalyst at low temperature: «In situ» supply of hydrogen by Ni/activated carbon catalyst. Applied Catalysis B: Environmental, 125, 41-50. doi:10.1016/j.apcatb.2012.05.019Roldán, L., Marco, Y.
Body mass changes and ad libitum fluid replacement in elite futsal players during official competition
The aim of this study was to calculate sweat loss, voluntary fluid replacement and levels of dehydration in elite futsal players during official competition. Measurements were made in 12 male elite futsal players during six official matches in the Spanish First Division (22-26 ºC and relative humidity 32-42.33%). Participants were weighed before the warm up and they reweighed immediately after the games. Sweat loss was assessed through changes in body mass after taking into account fluid intake and urine loss. To analyze this data the statistics used were descriptive and non parametric. Mean sweat loss of players amounted to 2.29 litres (s = 0.73). Mean fluid intake was 1.5 litres (s = 0.74), replacing 68.37% (s = 32.44) of total fluid loss. Players incurred a body mass deficit of 1.04% (s = 1.06), which is not seen as affecting their performance. There were no significant difference in sweat lost replaced and dehydration in relation to analyzed match (P > 0.05). There is a correlation between game time and body mass loss (r = 0.323, P = 0.016). From the results, we conclude that the level of hydration in studied players can be seen to maintain itself through a correct level of fluid intake. However, these measurements allow an individualisation of player hydration strategies, not taking exclusively into account game time
Studying the Properties of PVdF-HFP Based Lithium Polymer Electrolytes Using non-ionic Surfactants as Plasticizers
[EN] In this study, two different non-ionic surfactants have been evaluated as a plasticizer in lithium polymer electrolytes and compared with an organic carbonate-based plasticizer. To that end, non-ionic surfactants with different molecular weight and structure have been selected (Triton? X-100 and Brij?L23) and compared with organic carbonates (EC:DEC1:1) as plasticizers in lithium polymer electrolytes. The effect of the plasticizer content, salt content and surfactant characteristics on properties such as ionic conductivity, thermal stability and electrochemical stability of lithium polymer electrolytes has been studied. The results obtained show that the non-ionic surfactants studied as plasticizers (Triton? X-100 and Brij?L23) give lithium polymer electrolytes with higher thermal and electrochemical stability than organic carbonates, thus making them promising plasticizers for lithium polymer electrolytes, especially for high voltage lithium-ion batteries. Surfactant structure could influence the ionic conductivity of the polymer electrolytes, with the linear surfactants being more suitable for this application.This research was funded by the Centro de Desarrollo Tecnologico Industrial-CDTI (ALMAGRID Project-CER-20191006) and by the Instituto Valenciano de Competitividad EmpresarialIVACE-FEDER (MATER Project-IMDEEA/2019/48)Zubizarreta Saenz De Zaitegui, L.; Gil Agustí, MT.; Espinosa-López, JC.; García Pellicer, M.; Quijano-Lopez, A. (2021). Studying the Properties of PVdF-HFP Based Lithium Polymer Electrolytes Using non-ionic Surfactants as Plasticizers. Materiale Plastice. 58(1):237-247. https://doi.org/10.37358/mp.21.1.5463S23724758
Actualización en terapéutica de anticuerpos monoclonales
Objetivos: La terapéutica basada en anticuerpos monoclonales es un área en continuo crecimiento, motivo por el cual hemos considerado necesario realizar una actualización sobre la revisión que hicimos hace dos años.
Material y métodos: Se efectuó una revisión narrativa de las modificaciones efectuadas en ficha técnica en lo relativo a ampliación y/o modificación de las indicaciones de los anticuerpos monoclonales comercializados en nuestro país. También se detallan todos los nuevos anticuerpos monoclonales comercializados para los que se describen sus puntos más importantes. Asimismo se exponen las alertas más relevantes en relación a estas moléculas mediante la revisión de los informes mensuales de la Agencia Española de Medicamentos y Productos Sanitarios (AEMPS) y de las notas publicadas por distintas agencias reguladoras. Por último se han incluidolas moléculas empleadas fuera de indicación a partir de nuestro propio registro hospitalario y de aquéllas en distintas fases de investigación clínica a través del registro web clinicaltrials.
Resultados: Se han registrado 22 ampliaciones/modificaciones en las indicaciones de los anticuerpos monoclonales comercializados hasta el año 2011. En relación a dichas moléculas se han publicado 12 alertas por parte de las agencias reguladoras y de los laboratorios fabricantes. Igualmente son 12 los anticuerpos monoclonales que han sido comercializados en nuestro país desde entonces. Los usos fuera de indicación de estas moléculas son muy variados destacando dermatología y enfermedades del sistema inmune como servicios solicitantes. Existen multitud de anticuerpos monoclonales en investigación clínica, algunos de ellos como nuevas moléculas y en otros casos para la ampliación del repertorio de indicaciones de los mismos.
Conclusión: El conocimiento en la terapéutica basada en anticuerpos monoclonales precisa de actualizaciones periódicasdebido a la investigación de nuevas moléculas, cambios o ampliación de las indicaciones en las moléculas ya comercializadas y aparición de alertas durante la fase de farmacovigilancia.Aim: The monoclonal antibody-based therapeutics is a continuously growing area, which is why we found it necessary to perform an update on the review we did two years ago.
Materials and methods: They conducted a narrative review of the technical changes made regarding expansion and / or modification of monoclonal antibodies directed marketed in our country. It also details all new monoclonal antibodies marketed for describing its main points. It also presents the most relevant alerts in relation to these molecules by reviewing the monthly reports of the Agencia Española de Medicamentos y ProductosSanitarios (AEMPS)and notes issued by various regulatory agencies. Finally, we have included the molecules used off label from our own hospital registry and those in various stages of clinical research through clinical trials web log.
Results: There have been 22 additions / modifications in monoclonal antibodies directed marketed until 2011. In relation to these molecules it has been published 12 alerts by regulatory agencies and laboratories manufacturers. Also there are 12 monoclonal antibodies that have been marketed
in our country since then. The off-label uses of these molecules are varied highlighting dermatology
and immune system diseases such as requesting services. There are plenty of monoclonal antibodies
in clinical research, some of them as new molecules and in other cases to expand the repertoire of
indications thereof.
Conclusion: The knowledge in monoclonal antibody-based therapeutics requires regular updates
because of the research of new molecules, changes or expansion of indications in the molecules already
on the market and appearance of alerts during the pharmacovigilance
Optimal Scheduling for Energy Storage Systems in Distribution Networks
[EN] Distributed energy storage may play a key role in the operation of future low-carbon power systems as they can help to facilitate the provision of the required flexibility to cope with the intermittency and volatility featured by renewable generation. Within this context, this paper addresses an optimization methodology that will allow managing distributed storage systems of different technology and characteristics in a specific distribution network, taking into account not only the technical aspects of the network and the storage systems but also the uncertainties linked to demand and renewable energy variability. The implementation of the proposed methodology will allow facilitating the integration of energy storage systems within future smart grids. This paper's results demonstrate numerically the good performance of the developed methodology.This research was funded by European Regional Development Fund (Comunidad Valenciana FEDER 2014-2020 PO, CCI number: 2014ES16RFOP013) and the ITE-IVACE collaboration agreement corresponding to the annuity 2019 (file: IMDEEA-2019-38).Escoto Simó, M.; Montagud, M.; González-Cobos, N.; Belinchón, A.; Trujillo, AV.; Romero-Chavarro, JC.; Diaz-Cabrera, JC.... (2020). Optimal Scheduling for Energy Storage Systems in Distribution Networks. Energies. 13(15):1-13. https://doi.org/10.3390/en13153921S1131315The Impact of the Covid-19 Crisis on Clean Energy Progresshttps://www.iea.org/articles/the-impact-of-the-covid-19-crisis-on-clean-energy-progressSustainable Development Goalshttps://www.un.org/sustainabledevelopment/Mesarić, P., & Krajcar, S. (2015). Home demand side management integrated with electric vehicles and renewable energy sources. Energy and Buildings, 108, 1-9. doi:10.1016/j.enbuild.2015.09.001Rodrigues, E. M. G., Godina, R., Santos, S. F., Bizuayehu, A. W., Contreras, J., & Catalão, J. P. S. (2014). Energy storage systems supporting increased penetration of renewables in islanded systems. Energy, 75, 265-280. doi:10.1016/j.energy.2014.07.072Hirsch, A., Parag, Y., & Guerrero, J. (2018). Microgrids: A review of technologies, key drivers, and outstanding issues. Renewable and Sustainable Energy Reviews, 90, 402-411. doi:10.1016/j.rser.2018.03.040Clean Energy for All Europeans Packagehttps://ec.europa.eu/energy/topics/energy-strategy/clean-energy-all-europeans_enVISION 2050 Integrating Smart Networks for the Energy Transition: Serving Society and Protecting the Environmenthttps://www.etip-snet.eu/etip_publ/etip-snet-vision-2050/Staying on Course: Renewable Energy in the Time of COVID-19https://www.irena.org/newsroom/pressreleases/2020/Apr/Staying-on-Course-Renewable-Energy-in-the-time-of-COVID19ElNozahy, M. S., Abdel-Galil, T. K., & Salama, M. M. A. (2015). Probabilistic ESS sizing and scheduling for improved integration of PHEVs and PV systems in residential distribution systems. Electric Power Systems Research, 125, 55-66. doi:10.1016/j.epsr.2015.03.029Li, Y., Yang, Z., Li, G., Zhao, D., & Tian, W. (2019). Optimal Scheduling of an Isolated Microgrid With Battery Storage Considering Load and Renewable Generation Uncertainties. IEEE Transactions on Industrial Electronics, 66(2), 1565-1575. doi:10.1109/tie.2018.2840498Ciupăgeanu, D.-A., Lăzăroiu, G., & Barelli, L. (2019). Wind energy integration: Variability analysis and power system impact assessment. Energy, 185, 1183-1196. doi:10.1016/j.energy.2019.07.136Hemmati, R., Saboori, H., & Jirdehi, M. A. (2017). Stochastic planning and scheduling of energy storage systems for congestion management in electric power systems including renewable energy resources. Energy, 133, 380-387. doi:10.1016/j.energy.2017.05.167Xie, S., Hu, Z., & Wang, J. (2020). Two-stage robust optimization for expansion planning of active distribution systems coupled with urban transportation networks. Applied Energy, 261, 114412. doi:10.1016/j.apenergy.2019.114412Saboori, H., & Jadid, S. (2020). Optimal scheduling of mobile utility-scale battery energy storage systems in electric power distribution networks. Journal of Energy Storage, 31, 101615. doi:10.1016/j.est.2020.101615Kassai, M. (2017). Prediction of the HVAC Energy Demand and Consumption of a Single Family House with Different Calculation Methods. Energy Procedia, 112, 585-594. doi:10.1016/j.egypro.2017.03.1121Zheng, Y., Zhao, J., Song, Y., Luo, F., Meng, K., Qiu, J., & Hill, D. J. (2018). Optimal Operation of Battery Energy Storage System Considering Distribution System Uncertainty. IEEE Transactions on Sustainable Energy, 9(3), 1051-1060. doi:10.1109/tste.2017.2762364Jayasekara, N., Masoum, M. A. S., & Wolfs, P. J. (2016). Optimal Operation of Distributed Energy Storage Systems to Improve Distribution Network Load and Generation Hosting Capability. IEEE Transactions on Sustainable Energy, 7(1), 250-261. doi:10.1109/tste.2015.2487360Mehrjerdi, H., & Hemmati, R. (2019). Modeling and optimal scheduling of battery energy storage systems in electric power distribution networks. Journal of Cleaner Production, 234, 810-821. doi:10.1016/j.jclepro.2019.06.195Macedo, L. H., Franco, J. F., Rider, M. J., & Romero, R. (2015). Optimal Operation of Distribution Networks Considering Energy Storage Devices. IEEE Transactions on Smart Grid, 6(6), 2825-2836. doi:10.1109/tsg.2015.2419134Lunci Hua, Jia Wang, & Chi Zhou. (2014). Adaptive Electric Vehicle Charging Coordination on Distribution Network. IEEE Transactions on Smart Grid, 5(6), 2666-2675. doi:10.1109/tsg.2014.2336623Guo, X., Guo, X., & Su, J. (2013). Improved Support Vector Machine Short-term Power Load Forecast Model Based on Particle Swarm Optimization Parameters. Journal of Applied Sciences, 13(9), 1467-1472. doi:10.3923/jas.2013.1467.1472Bordin, C., Anuta, H. O., Crossland, A., Gutierrez, I. L., Dent, C. J., & Vigo, D. (2017). A linear programming approach for battery degradation analysis and optimization in offgrid power systems with solar energy integration. Renewable Energy, 101, 417-430. doi:10.1016/j.renene.2016.08.066IEEE PES AMPS DSAS Test Feeder Working Grouphttps://site.ieee.org/pes-testfeeders/resources/Lotero, R. C., & Contreras, J. (2011). Distribution System Planning With Reliability. IEEE Transactions on Power Delivery, 26(4), 2552-2562. doi:10.1109/tpwrd.2011.2167990Munoz-Delgado, G., Contreras, J., & Arroyo, J. M. (2015). Joint Expansion Planning of Distributed Generation and Distribution Networks. IEEE Transactions on Power Systems, 30(5), 2579-2590. doi:10.1109/tpwrs.2014.236496
Digitalización y gestión de la infraestructura de recarga del vehículo eléctrico para su integración eficiente en la red de distribución
[ES] La integración del vehículo eléctrico (EV) es una pieza clave en la transición energética. Sin embargo, una alta penetración del EV supone un incremento de la demanda eléctrica con posibles consecuencias negativas sobre las redes de distribución. Para evitarlo, es necesario digitalizar las infraestructuras de recarga para ofrecer mecanismos de carga controlada con el objetivo de minimizar el impacto en la red y gestionar de manera activa y eficiente los recursos. En este artículo se presenta un piloto real de recarga con mecanismos de monitorización y de control de carga, en el que se muestran las ventajas de tener una infraestructura monitorizada, digitalizada y gestionada, así como los efectos que esto tiene sobre la red.La elaboración de este artículo se llevó a cabo en el marco de la red de Centros de Excelencia HySGrid+, con el título
Desarrollo de comunidades locales energéticamente positivas con sistemas híbridos de generación renovable y
almacenamiento financiado por el Ministerio de Ciencia, Innovación y Universidades a través del organismo CDTI, en
el programa CER-20191019. Los autores agradecen la contribución del Instituto Valenciano de Competitividad
Empresarial y del Fondo de Desarrollo Regional Europeo por hacer posible los desarrollos, permitiendo a ITE la difusión
de los resultados y facilitando y promoviendo la transferencia de conocimiento a las empresas.Calatayud Martí, P.; Montagud Aguar, M.; Arcos Usero, L.; Romero-Chavarro, JC.; García Pellicer, M. (2020). Digitalización y gestión de la infraestructura de recarga del vehículo eléctrico para su integración eficiente en la red de distribución. Grupo Tecma Red. 138-143. http://hdl.handle.net/10251/178592S13814
Biofuel cells: the sustainable energy in living beings
[EN] Glucose fuel cells arise from the need for developing small devices
able to supply energy in an independent manner while remain implanted in living organisms. In this field there are different
challenges to be addressed related with low current densities and durability; important and challenging milestones when
dealing with in vivo applications. In order to overcome the drawbacks of enzymatic biofuel cells, different approaches to
achieve useful systems in terms of stability, capacity and durability for living organisms application are being proposed via
enzymatic engineering techniques and improvements in enzyme immobilization onto electrodes and materials employed at
this purpose[ES] La biopila de glucosa nace de la necesidad de desarrollar pequeños dispositivos capaces de suministrar energía de manera
independiente implantados en un ser vivo. En esta disciplina existen retos a solventar relacionados con baja durabilidad y
densidad de corriente; hitos desafiantes y serios cuando se trata de aplicaciones in vivo. Con el objetivo de abordar las
limitaciones de la biopila enzimática se plantean estrategias para obtener un sistema útil en cuanto a la estabilidad,
capacidad y durabilidad para aplicaciones en organismos vivos mediante ingeniería enzimática y mejoras en
inmovilización de enzimas en electrodos y en los materiales utilizados para elloLos autores agradecen al Ministerio de Ciencia e Innovación por la financiación recibida a través del Subprograma Torres-Quevedo del Programa Estatal de Promoción del Talento y su Empleabilidad 2013-2016 en el marco del proyecto Bio2 (PTQ-14-07145)Buaki-Sogo, M.; Zubizarreta Saenz De Zaitegui, L.; Gil Agustí, MT.; García Pellicer, M.; Quijano-Lopez, A. (2018). Biopilas: la energia sostenible en los seres vivos. Avances en Quimica. 13(1):21-31. http://hdl.handle.net/10251/122507S213113
Planificación del dimensionado, localización y operación óptima de sistemas de almacenamiento de energía en redes de distribución
[ES] El almacenamiento de energía distribuido puede desempeñar un papel clave en el funcionamiento de los futuros sistemas de energía con bajas emisiones de carbono, ya que pueden ayudar a facilitar la provisión de la flexibilidad necesaria para hacer frente a la intermitencia y volatilidad que presenta la generación renovable. En este contexto, este trabajo aborda una metodología de optimización que permite planificar y gestionar sistemas de almacenamiento distribuido de diferentes tecnologías y características en una red de distribución, teniendo en cuenta no solo los aspectos técnicos de la red y de los sistemas de almacenamiento sino también la incertidumbre vinculada a la variabilidad de la demanda y la generación renovable.Esta investigación ha sido financiada por el Fondo Europeo de Desarrollo Regional y el convenio de colaboración ITEIVACE correspondiente a la anualidad 2019. Este trabajo se ha realizado en el marco de HySGrid +, una red española
de Centros de Excelencia que cuenta con el apoyo del Ministerio de Ciencia e Innovación a través del organismo CDTI,
en el marco del programa Cervera "CER-20191019.Belinchón Calderón, A.; Escoto Simó, M.; González-Cobos, N.; Montagud Aguar, M.; Valentina Trujillo, A.; García Pellicer, M. (2020). Planificación del dimensionado, localización y operación óptima de sistemas de almacenamiento de energía en redes de distribución. Grupo Tecma Red. 70-75. http://hdl.handle.net/10251/178593S707
Grafeno: obtención, tipos y su aplicación como sensor para detección de gases y sensor de presión
[ES] El grafeno, un material bidimensional (2D) de espesor atómico, que presenta extraordinarias propiedades electrónicas, mecánicas y elevada área superficial, ha despertado un gran interés en la fabricación de sensores. En la presente revisión se revisan los avances en sensores basados en grafeno con potencial de aplicación en el ámbito medioambiental para la detección de gases tóxicos. Además se muestra el auge de los sensores de presión basados en grafeno como sensores ¿wearable¿ en el ámbito de la salud humana, el Internet of Things o la inteligencia artificial.[EN] Graphene is a 2D layered carbon material with atomic thickness. This material exhibits remarkable electronic and mechanical properties and many of these properties are interesting for sensing applications. The present work reviews the potential
application of graphene-based sensors on environmental field, for toxic gases detection. Moreover, the increasing research
interest of graphene-based pressure sensors as key components in wearable electronic sensing devices for application in the
field of human health, Internet of Thing and artificial intelligence is discussed.Los autores agradecen al Ministerio de Ciencia, Innovación y
Universidades por la financiación recibida a través del Subprograma Torres-Quevedo del Programa Estatal de Promoción del
Talento y su Empleabilidad 2013-2016 en el marco del proyecto
eGRAF (PTQ-17-09497).Esteve-Adell, I.; Gil Agustí, MT.; Zubizarreta Saenz De Zaitegui, L.; Quijano-Lopez, A.; García Pellicer, M. (2020). Grafeno: obtención, tipos y su aplicación como sensor para detección de gases y sensor de presión. Avances en Quimica. 15(2):57-72. http://hdl.handle.net/10251/166201577215