32 research outputs found

    Environmental pollution produced by gold artisanal mining in the Mapiri river basin, Apolobamba, Bolivia

    Get PDF
    Mining activity is very important in Bolivia since colonial times. Today it has been reactivated, especially gold mining, due to rise in metal prices. Artisanal and small-scale mining activities are abundant in the protected area of Apolobamba, near the border with Peru. Here mercury is used to recovery gold by obtaining an Hg-Au amalgam. This manipulation with mercury causes an important environmental impact in the area. The present work is a preliminary study of the contamination of the Mapiri river basin in the Apolobamba area. In the head of this basin, located at more than 4000 m above sea level, gold is mined from hydrothermal gold deposits of Paleozoic age. We have sampled several mining sites from this area, in particular the ones known as Viscachani, Flor de Mayo and Chojlaya, located in the proximity of the head area of the Mapiri river basin. These mining sites were in activity during the present sampling campaign. Different metals were measured by means of XRF (Se, As, Cu, Zn, Cd, Pb, Hg) in tailing samples from the different gold mining sites. In addition mercury concentrations were measured in water and in vegetation close to the processing areas by means of atomic absorption spectrometry with Zeeman effect (LUMEX RA-915 Equipment). Tailings are mainly constituted by quartz with minor contents of clay minerals and sulphides. The most abundant sulphides are galena and arsenopyrite. Chalcopyrite, sphalerite, pyrite and sulphosalts also occur in minor amounts, as well as minor secondary minerals. Gold content, after recovery with mercury, is high, between 4.56 ppm and 10.35 ppm. The Hg content of the tailings ranges from 149 to 1027 ppm. Lixiviable mercury from these samples ranges between 30.10 and 859.94 ng l-1. Water released from the tailings contains between 0.1 and 5.7 ppb of Hg. Studied vegetation typical of the area has high Hg contents, between 162 and 219 ppm. In addition there is a high arsenic content in all the studied tailings, except in those from the Viscachani mining site, where concentrations of this element ranges from 456 ppm to 18540 ppm. The Pb content usually ranges from 337 to 939 ppm. The Chojlaya mining site tailing has exceptionally high values of heavy metals: Pb content is between 2.26 and 3.27 wt.%, Cd ranges from 160 to 228 ppm, Zn from 194 to 794 ppm, Cu from 847 to 1052 ppm and Se from 105 to 187 ppm. These contents also contribute to an environmental pollution. In conclusion the gold mining activities in the Mapiri river basin produce and intense environmental pollution, mainly related to mercury and arsenic contents in the proximity of these mining activities. After processing, tailings still contain important amounts of gold suggesting that the amalgamation method is not effective to gold recovering.Peer ReviewedPostprint (published version

    La monacita, mena de “tierras raras” y su polĂ©mica posibilidad de explotaciĂłn en Ciudad Real.

    Get PDF
    Las tierras raras son elementos de alto interés tecnológico, por sus posibilidades de empleo en la fabricación de bienes de consumo electrónico. Se trata de elementos estratégicos para la Unión Europea, que busca reducir su dependencia en este tipo de materias primas de los países suministradores no europeos. En concreto estos elementos son suministrados en mås del 80-85% por China, lo que supone un alto riesgo para su comercio

    Occurrence and environmental constraints of gray monazite in red soils from the Campo de Montiel area (SW Ciudad Real province, south central Spain)

    Get PDF
    Monazite ((Ce, La, Nd, Th) PO4) is a rare and strategic mineral that occurs naturally as an accessory and minor mineral in diverse igneous and metamorphic rocks. This mineral does not frequently form mineable ore deposits and it has different typologies, including those formed by endogenous processes (generally “yellow monazite” mineralizations) and those formed by exogenous processes (“gray monazite” mineralizations). The mineral is an important ore of Rare Earth Elements (REEs), which have been identified by the European Union as critical raw materials. Monazite can be considered a weathering-resistant mineral, and the mobility of the REE and associated elements is low. The study reported here concerns a mineralogical and geochemical assessment of the occurrence and risks associated with the presence of concentrations of monazite in a typical, well-developed, and representative red Mediterranean soil, in order to establish the associated risk with their future mining. The results confirmed that monazite ore is particularly poor in radioactive elements, and it is concentrated in the most surficial soil horizons. The chemical mobility of REEs present in the soil, as assessed by selective extraction with ammonium acetate in acidic media, follows the order Y > Dy > U > Tb > Gd > Eu > Sm > La > Th > Ce. The mobility of REEs contained in monazite proved to be higher than that of the REE compounds in the upper horizons of the soil profile suggesting the immobilization in other REE-containing minerals, while light REEs show lower mobility rates than heavy REEs, due to an immobilization of LREE by sorption with iron oxy-hydroxides. Further studies are required in order to obtain better speciation data for REEs in soils aimed to identify soluble and insoluble compounds

    An approach for evaluating the bioavailability and risk assessment of potentially toxic elements using edible and inedible plants—the Remance (Panama) mining area as a model

    Get PDF
    Mining affects the environment, particularly through the persistence of accumulation of tailings materials; this is aggravated under tropical climatic conditions, which favours the release of potentially toxic elements (PTEs) bioavailable to the local flora and fauna and supposing a risk to human health. The Remance gold mine (Panamá), exploited intermittently for more than 100 years, and has remained derelict for over 20 years. Within the area live farmers who carry out subsistence agriculture and livestock activities. The objective of this study has been to study the transference of PTEs in the local agricultural soil-plants system, with the goal of identifying their bioavailability to perform a human risk assessment. The results obtained of the Bioaccumulation coefficient in local plants show very weak to strong absorption of As (< 0.001–1.50), Hg (< 0.001–2.38), Sb (0.01–7.83), Cu (0.02–2.89), and Zn (0.06–5.32). In the case of Cu in grass (18.3 mg kg−1) and plants (16.9 mg kg−1) the concentrations exceed the maximum authorised value in animal nutrition for ruminants (10 mg kg−1). The risk to human health for edible plants exceeds the non-carcinogenic risk for rice, corn, cassava, and tea leaves for Sb (HQ 19.450, 18.304, 6.075, 1.830, respectively), the carcinogenic risk for Cu (CR = 2.3 × 10–3, 7.7 × 10 −4, 1.1 × 10–3, 1.0 × 10–3, respectively), and the carcinogenic risk for As in rice, corn and tea leaves (CR = 8 × 10–5, 3 × 10–5, 3 × 10–5, respectively). Urgent measures are needed to alleviate these effects.Depto. de Mineralogía y PetrologíaFac. de Ciencias GeológicasTRUECRUE-CSICNational Secretary of Science and Technology (Panamá)Institute for the Training and Use of Human Resources (Panamá)Universidad de Castilla La Manchapu

    Geochemical Characterization and Trace-Element Mobility Assessment for Metallic Mine Reclamation in Soils Affected by Mine Activities in the Iberian Pyrite Belt

    Get PDF
    The geochemical characterization of the mine deposits and soils in metal mining areas is essential in order to develop an effective mine reclamation strategy. The determination of total potentially toxic element (PTE) content, together with the application of chemical extraction procedures, can give insight into the behavior of contaminants after the application of different mine reclamation solutions, as well as identify the areas where urgent action is needed. This work presents a practical application to the evaluation of the pollution potential of trace elements in soils affected by mining activities, to be used in metallic mine reclamation. The PTE behavior was assessed by single extractions in order to simulate four environmental conditions: PTE mobility under rainfall conditions, acid mine drainage, reducing conditions, and plant uptake. The spatial distribution of contaminants in the study area was evaluated by determination of PTE total content in soil samples. Trace elements with high natural mobility, such as Zn, appeared concentrated at water and sediment discharge areas, while As, Pb, and Cu contents were higher near the mine wastes. The results obtained after the extractions suggested that the highest PTE content was extracted in the complexing–reducing medium, due to the dissolution of secondary sulfates and Fe3+ oxyhydroxides and the subsequent release of PTEs associated with those mineral phases. Reclamation strategies applied in the study area should promote efficient water drainage, infiltration, and subsuperficial water circulation in order to maintain oxidant conditions in the soil. The methodology applied in this study may constitute a valuable tool to define the geochemical constraints in metal mining areas, as well as help to develop appropriate mine reclamation solutions

    Ecological and health risk assessments of an abandoned gold mine (Remance, Panama): Complex scenarios need a combination of indices

    Get PDF
    The derelict Remance gold mine is a possible source of pollution with potentially toxic elements (PTEs). In the study area, diverse mine waste has been left behind and exposed to weather conditions, and poses risks for soil, plants and water bodies, and also for the health of local inhab-itants. This study sought to perform an ecological and health risk assessment of derelict gold mining areas with incomplete remediation, including: (i) characterizing the geochemical distribution of PTEs; (ii) assessing ecological risk by estimating the pollution load index (PLI) and potential ecological risk index (RI); (iii) assessing soil health by dehydrogenase activity; and iv) establishing non-carcinogenic (HI) and carcinogenic risks (CR) for local inhabitants. Soil health seems to depend on not only PTE concentrations, but also on organic matter (OM). Both indexes (PLI and RI) ranged from high to extreme near mining and waste accumulation sites. As indicated by both the HI and CR results, the mining area poses a health risk for local inhabitants and particularly for children. For this reason, it will be necessary to set up environmental management programs in the areas that are most affected (tailings and surrounding areas) and accordingly establish the best remediation strategies to minimize risks for the local populatio

    The mersade (European Union) project: testing procedures and environmental impact for the safe storage of liquid mercury in the Almadén district, Spain.

    Get PDF
    The MERSADE Project (LIFE--European Union) tested the Las Cuevas decommissioned mining complex (Almadén mercury district, Spain) as a potential site for the installation of a future European prototype safe deposit of surplus mercury from industrial activities. We here present the results of a baseline study on the distribution of mercury in soils and air in the Las Cuevas complex and surrounding areas, and show the results of a plume contamination model using the ISC-AERMOD software. Despite restoration works carried out in 2004, the Las Cuevas complex can still be regarded as hotspot of mercury contamination, with large anomalies above 800 microg g(-1) Hg (soils) and 300 ng Hg m(-3) (air). In the case of soils, high, and persistent concentrations above 26 microg g(-1) Hg extend well beyond the complex perimeter for more than 2 km. These concentrations are about three orders of magnitude above world baselines. The same applies to mercury in air, with high concentrations above 300 ng Hg m(-3) inside the perimeter, which nonetheless fade away in a few hundred meters. Air contamination modelling (Hg gas) predicts formation of a NW-SE oriented narrow plume extending for a few hundred meters from the complex perimeter. The geographic isolation of Las Cuevas and its mining past make the complex an ideal site for mercury stocking. The only potential environmental hazards are the raising of livestock only a few hundred meters away from the complex and flash floods
    corecore