7,004 research outputs found

    Deep into the Water Fountains: The case of IRAS 18043-2116

    Get PDF
    (Abridged) The formation of large-scale (hundreds to few thousands of AU) bipolar structures in the circumstellar envelopes (CSEs) of post-Asymptotic Giant Branch (post-AGB) stars is poorly understood. The shape of these structures, traced by emission from fast molecular outflows, suggests that the dynamics at the innermost regions of these CSEs does not depend only on the energy of the radiation field of the central star. Deep into the Water Fountains is an observational project based on the results of programs carried out with three telescope facilities: The Karl G. Jansky Very Large Array (JVLA), The Australia Telescope Compact Array (ATCA), and the Very Large Telescope (SINFONI-VLT). Here we report the results of the observations towards the WF nebula IRAS 18043-2116: Detection of radio continuum emission in the frequency range 1.5GHz - 8.0GHz; H2_{2}O maser spectral features and radio continuum emission detected at 22GHz, and H2_{2} ro-vibrational emission lines detected at the near infrared. The high-velocity H2_{2}O maser spectral features, and the shock-excited H2_{2} emission detected could be produced in molecular layers which are swept up as a consequence of the propagation of a jet-driven wind. Using the derived H2_{2} column density, we estimated a molecular mass-loss rate of the order of 10910^{-9}M_{\odot}yr1^{-1}. On the other hand, if the radio continuum flux detected is generated as a consequence of the propagation of a thermal radio jet, the mass-loss rate associated to the outflowing ionized material is of the order of 105^{-5}M_{\odot}yr1^{-1}. The presence of a rotating disk could be a plausible explanation for the mass-loss rates estimated.Comment: 10 pages, 5 figures. Accepted for publication in A&

    Permeabilidad de gases en membranas de zeolita ZSM-5

    Get PDF
    El trabajo incluido en el presente articulo tiene como objetivo analizar la influencia de la deposición de zeolita ZSM-5 en un tubo de alumina sobre la velocidad de transferencia de materia de distintos gases con el fin de analizar la capacidad de separación. Se ha evaluado la influencia de la presencia de zeolita, así como del caudal de gas alimentado y la temperatura a la que se desarrolla el proceso deseparación

    Determination of the Kobayashi-Maskawa-Cabibbo matrix element V_{us} under various flavor-symmetry-breaking models in hyperon semileptonic decays

    Full text link
    We study the success to describe hyperon semileptonic decays of four models that incorporate second-order SU(3) symmetry breaking corrections. The criteria to assess their success is by determining V_{us} in each of the three relevant hyperon semileptonic decays and comparing the values obtained with one another and also with the one that comes from K_{l3} decays. A strong dependence on the particular symmetry breaking model is observed. Values of V_{us} which do not agree with the one of K_{l3} are generally obtained. However, in the context of chiral perturbation theory, only the model whose corrections are O(m_s) and O(m_s^{3/2}) is successful. Using its predictions for the f_1 form factors one can quote a value of V_{us} from this model, namely, V_{us}=0.2176\pm 0.0026, which is in excellent agreement with the K_{l3} one.Comment: Final versio

    Gases Separation by ZSM-5 based Membranes

    Get PDF
    AbstractPresent work analyses the effect produced by the presence of ZSM-5 zeolite in an alumina tube upon the permeation rate of different gases (nitrogen, oxygen, carbon dioxide and normal-butane). A comparison between experimental data of permeation through the membrane with and without ZSM-5 zeolite was performed with an increase in the resistance to transport more evident for n-butane. Also the influence of temperature upon permeation has been analyzed

    Light propagation through optical media using metric contact geometry

    Full text link
    In this work, we show that the orthogonality between rays and fronts of light propagation in a medium is expressed in terms of a suitable metric contact structure of the optical medium without boundaries. Moreover, we show that considering interfaces (modeled as boundaries) orthogonality is no longer fulfilled, leading to optical aberrations and in some cases total internal reflection. We present some illustrative examples of this latter point.Comment: 8 pages, 7 figure

    Crystallization and melting of bacteria colonies and Brownian Bugs

    Get PDF
    Motivated by the existence of remarkably ordered cluster arrays of bacteria colonies growing in Petri dishes and related problems, we study the spontaneous emergence of clustering and patterns in a simple nonequilibrium system: the individual-based interacting Brownian bug model. We map this discrete model into a continuous Langevin equation which is the starting point for our extensive numerical analyses. For the two-dimensional case we report on the spontaneous generation of localized clusters of activity as well as a melting/freezing transition from a disordered or isotropic phase to an ordered one characterized by hexagonal patterns. We study in detail the analogies and differences with the well-established Kosterlitz-Thouless-Halperin-Nelson-Young theory of equilibrium melting, as well as with another competing theory. For that, we study translational and orientational correlations and perform a careful defect analysis. We find a non standard one-stage, defect-mediated, transition whose nature is only partially elucidated.Comment: 13 Figures. 14 pages. Submitted to Phys. Rev.
    corecore