39 research outputs found

    Cerebrospinal fluid neopterin analysis in neuropediatric patients: establishment of a new cut off-value for the identification of inflammatory-immune mediated processes

    Get PDF
    OBJECTIVE: A high level of cerebrospinal fluid (CSF) neopterin is a marker of central nervous system inflammatory-immune mediated processes. We aimed to assess data from 606 neuropediatric patients, describing the clinical and biochemical features of those neurological disorders presenting CSF neopterin values above a new cut-off value that was defined in our laboratory. METHODS: To establish the new CSF neopterin cut-off value, we studied two groups of patients: Group 1 comprised 68 patients with meningoencephalitis, and Group 2 comprised 52 children with a confirmed peripheral infection and no central nervous system involvement. We studied 606 CSF samples from neuropediatric patients who were classified into 3 groups: genetic diagnosis (A), acquired/unknown etiologic neurologic diseases (B) and inflammatory-immune mediated processes (C). RESULTS: The CSF neopterin cut-off value was 61 nmol/L. Out of 606 cases, 56 presented a CSF neopterin level above this value. Group C had significantly higher CSF neopterin, protein and leukocyte values than the other groups. Sixteen of twenty-three patients in this group had a CSF neopterin level above the cut-off, whereas three and seven patients presented increased leukocyte and protein values, respectively. A significant association was found among CSF neopterin, proteins and leukocytes in the 606 patients. White matter disturbances were associated with high CSF neopterin concentrations. CONCLUSIONS: Although children with inflammatory-immune mediated processes presented higher CSF neopterin values, patients with other neurological disorders also showed increased CSF neopterin concentrations. These results stress the importance of CSF neopterin analysis for the identification of inflammatory-immune mediated processes

    Cognitive stimulation leads to a long-term brain activation with a spectral shift to higher frequencies in Rett syndrome patients

    Get PDF
    Rett syndrome (RTT) is the second leading cause of mental disability in women and causes a serious neurodevelopmental disorder that leads to a global disability of the individual. Cognitive training has been shown to improve neuropsychological and neurophysiological parameters in similar pathologies. However, knowledge about neurophysiological training in RTT is scarce. The objective of the study was to evaluate the result and duration of the effect of cognitive stimulation over four consecutive days of training, in order to determine the viability of a long-term effect. Nineteen patients performed a cognitive task using an eye tracking device during the first three days of training. Prior to each training, a resting state EEG with eyes open was recorded to assess changes in spectral variables in the brain. An EEG recording at rest with eyes open was also acquired on the fourth day, in order to evaluate the differences with respect to the first day. Results showed a spectral shift to higher frequencies in a long-term period of four days. Significant positive alterations of brain rhythms were observed: decrease in low-frequency (delta) oscillations and an increase in high-frequency (beta) rhythms, resulting in more complex signals closer to non-pathological brain behavior. In conclusion, this study showed the potential long-term benefits of cognitive stimulation in RTT patients.Postprint (published version

    Copper Toxicity Associated With an ATP7A-Related Complex Phenotype

    Get PDF
    The ATP7A gene encodes a copper transporter whose mutations cause Menkes disease, occipital horn syndrome (OHS), and, less frequently, ATP7A-related distal hereditary motor neuropathy (dHMN). Here we describe a family with OHS caused by a novel mutation in the ATP7A gene, including a patient with a comorbid dHMN that worsened markedly after being treated with copper histidinate.info:eu-repo/semantics/publishedVersio

    Paradigmatic de novo GRIN1 variants recapitulate pathophysiological mechanisms underlying GRIN1-related disorder clinical spectrum

    Get PDF
    Background: GRIN-related disorders (GRD), the so-called grinpathies, is a group of rare encephalopathies caused by mutations affecting GRIN genes (mostly GRIN1, GRIN2A and GRIN2B genes), which encode for the GluN subunit of the N-methyl D-aspartate (NMDA) type ionotropic glutamate receptors. A growing number of functional studies indicate that GRIN-encoded GluN1 subunit disturbances can be dichotomically classified into gain- and loss-of-function, although intermediate complex scenarios are often present. Methods: In this study, we aimed to delineate the structural and functional alterations of GRIN1 disease-associated variants, and their correlations with clinical symptoms in a Spanish cohort of 15 paediatric encephalopathy patients harbouring these variants. Results: Patients harbouring GRIN1 disease-associated variants have been clinically deeplyphenotyped. Further, using computational and in vitro approaches, we identified different critical checkpoints affecting GluN1 biogenesis (protein stability, subunit assembly and surface trafficking) and/or NMDAR biophysical properties, and their association with GRD clinical symptoms. Conclusions: Our findings show a strong correlation between GRIN1 variants-associated structural and functional outcomes. This structural-functional stratification provides relevant insights of genotypephenotype association, contributing to future precision medicine of GRIN1-related encephalo

    IPSC‐based modeling of THD recapitulates disease phenotypes and reveals neuronal malformation

    Get PDF
    Tyrosine hydroxylase deficiency (THD) is a rare genetic disorder leading to dopaminergic depletion and early-onset Parkinsonism. Affected children present with either a severe form that does not respond to L-Dopa treatment (THD-B) or a milder L-Dopa responsive form (THD-A). We generated induced pluripotent stem cells (iPSCs) from THD patients that were differentiated into dopaminergic neurons (DAn) and compared with control-DAn from healthy individuals and gene-corrected isogenic controls. Consistent with patients, THD iPSC-DAn displayed lower levels of DA metabolites and reduced TH expression, when compared to controls. Moreover, THD iPSC-DAn showed abnormal morphology, including reduced total neurite length and neurite arborization defects, which were not evident in DAn differentiated from control-iPSC. Treatment of THD-iPSC-DAn with L-Dopa rescued the neuronal defects and disease phenotype only in THDA-DAn. Interestingly, L-Dopa treatment at the stage of neuronal precursors could prevent the alterations in THDB-iPSC-DAn, thus suggesting the existence of a critical developmental window in THD. Our iPSC-based model recapitulates THD disease phenotypes and response to treatment, representing a promising tool for investigating pathogenic mechanisms, drug screening, and personalized management

    Cognitive stimulation has potential for brain activation in individuals with Rett syndrome

    Get PDF
    Background: Knowledge regarding neuropsychological training in Rett syndrome (RS) is scarce. The aim of this study was to assess the outcome and the duration of the effect of cognitive stimulation on topographic EEG data in RS. Method: Twenty female children diagnosed with RS were included in the analysis. Girls with RS conducted a cognitive task using an eye-tracker designed to evaluate access and choice skills. EEG data was acquired during the experimental procedure including two 10-minutes baseline stages before and after the task. Topographical changes of several EEG spectral markers including absolute and relative powers, brain symmetry index and entropy were assessed. Results: Topographic significance probability maps suggested statistical decreases on delta activity and increases on beta rhythm associated with the cognitive task. Entropy increased during and after the task, likely related to more complex brain activity. A significant positive interaction was obtained between brain symmetry index (BSI) and age showing that the improvement of interhemispheric symmetry was higher in younger girls (5-10 years). Conclusions: According to our findings, significant alterations of brain rhythms were observed during and after cognitive stimulation, suggesting that cognitive stimulation may have effects on brain activity beyond the stimulation period. Finally, our promising results also showed an increased brain symmetry that was especially relevant for the younger group. This could suggest an interaction of the eye-tracking cognitive task, however, further studies in this field are needed to assess the relation between brain asymmetries and age.We would like to acknowledge specific funding support from the Spanish Patient Associations Mi Princesa Rett and Rettando al Síndrome de Rett. This project has also received funding from Torrons Vicens and the Ministry of Science and Innovation (MICINN), Spain, under contract PID2020-117751RB-I00. CIBER-BBN is an initiative of the Instituto de Salud Carlos III, Spain. A. Bachiller is a Serra Húnter Fellow. A.García-Cazorla is supported by FIS P118/00111 “Instituto de Salud Carlos III (ISCIII)” and “Fondo Europeo de desarrollo regional (FEDER)”. A. Tost has received the predoctoral scholarship FI-AGAUR from the Generalitat de Catalunya.Peer ReviewedPostprint (author's final draft

    Sphingolipid desaturase DEGS1 is essential for mitochondria-associated membrane integrity

    Get PDF
    Sphingolipids function as membrane constituents and signaling molecules, with crucial roles in human diseases, from neurodevelopmental disorders to cancer, best exemplified in the inborn errors of sphingolipid metabolism in lysosomes. The dihydroceramide desaturase Delta 4-dihydroceramide desaturase 1 (DEGS1) acts in the last step of a sector of the sphingolipid pathway, de novo ceramide biosynthesis. Defects in DEGS1 cause the recently described hypomyelinating leukodystrophy-18 (HLD18) (OMIM #618404). Here, we reveal that DEGS1 is a mitochondria-associated endoplasmic reticulum membrane-resident (MAM-resident) enzyme, refining previous reports locating DEGS1 at the endoplasmic reticulum only. Using patient fibroblasts, multiomics, and enzymatic assays, we show that DEGS1 deficiency disrupts the main core functions of the MAM: (a) mitochondrial dynamics, with a hyperfused mitochondrial network associated with decreased activation of dynamin-related protein 1; (b) cholesterol metabolism, with impaired sterol O-acyltransferase activity and decreased cholesteryl esters; (c) phospholipid metabolism, with increased phosphatidic acid and phosphatidylserine and decreased phosphatidylethanolamine; and (d) biogenesis of lipid droplets, with increased size and numbers. Moreover, we detected increased mitochondrial superoxide species production in fibroblasts and mitochondrial respiration impairment in patient muscle biopsy tissues. Our findings shed light on the pathophysiology of HLD18 and broaden our understanding of the role of sphingolipid metabolism in MAM function

    Impairment of the mitochondrial one-carbon metabolism enzyme SHMT2 causes a novel brain and heart developmental syndrome

    Get PDF
    Inborn errors of metabolism cause a wide spectrum of neurodevelopmental and neurodegenerative conditions [15]. A pivotal enzyme located at the intersection of the amino acid and folic acid metabolic pathways is SHMT2, the mitochondrial form of serine hydroxymethyltransferase. SHMT2 performs the first step in a series of reactions that provide one-carbon units covalently bound to folate species in mitochondria: it transfers one-carbon units from serine to tetrahydrofolate (THF), generating glycine and 5,10-methylene-THF. Using whole exome sequencing (WES), we identified biallelic SHMT2 variants in five individuals from four different families. All identified variants were located in conserved residues, either absent or extremely rare in control databases (gnomAD, ExAC), and cosegregated based on a recessive mode of inheritance (pRec = 0.9918 for this gene). In family F1, a homozygous missense variant present in two affected siblings was located in a region without heterozygosity (~ 10 Mb, the only region > 1 Mb shared by both siblings) in which no other candidate variants were found, providing a strong genetic evidence of causality for these variants. The missense/in-frame deletion nature of these variants, and the absence of loss-of-function homozygous individuals in control databases, combined with the fact that complete loss of SHMT2 is embryonic lethal in the mouse, suggested that these variants may cause hypomorphic effects. Using 3D molecular dynamics models of the SHMT2 protein, we concluded that these candidate variants probably alter the SHMT2 oligomerization process, and/or disrupt the conformation of the active site, thus inducing deleterious effects on SHMT2 enzymatic function

    Prevalence of DDC genotypes in patients with aromatic L-amino acid decarboxylase (AADC) deficiency and in silico prediction of structural protein changes

    Get PDF
    Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare autosomal recessive genetic disorder affecting the biosynthesis of dopamine, a precursor of both norepinephrine and epinephrine, and serotonin. Diagnosis is based on the analysis of CSF or plasma metabolites, AADC activity in plasma and genetic testing for variants in the DDC gene. The exact prevalence of AADC deficiency, the number of patients, and the variant and genotype prevalence are not known. Here, we present the DDC variant (n = 143) and genotype (n = 151) prevalence of 348 patients with AADC deficiency, 121 of whom were previously not reported. In addition, we report 26 new DDC variants, classify them according to the ACMG/AMP/ACGS recommendations for pathogenicity and score them based on the predicted structural effect. The splice variant c.714+4A>T, with a founder effect in Taiwan and China, was the most common variant (allele frequency = 32.4%), and c.[714+4A>T];[714+4A>T] was the most common genotype (genotype frequency = 21.3%). Approximately 90% of genotypes had variants classified as pathogenic or likely pathogenic, while 7% had one VUS allele and 3% had two VUS alleles. Only one benign variant was reported. Homozygous and compound heterozygous genotypes were interpreted in terms of AADC protein and categorized as: i) devoid of full-length AADC, ii) bearing one type of AADC homodimeric variant or iii) producing an AADC protein population composed of two homodimeric and one heterodimeric variant. Based on structural features, a score was attributed for all homodimers, and a tentative prediction was advanced for the heterodimer. Almost all AADC protein variants were pathogenic or likely pathogenic
    corecore