74 research outputs found

    Homology of neocortical areas in rats and primates based on cortical type analysis: an update of the hypothesis on the dual origin of the neocortex

    Full text link
    Sixty years ago, Friedrich Sanides traced the origin of the tangential expansion of the primate neocortex to two ancestral anlagen in the allocortex of reptiles and mammals, and proposed the Hypothesis on the Dual Origin of the Neocortex. According to Sanides, paraolfactory and parahippocampal gradients of laminar elaboration expanded in evolution by addition of successive concentric rings of gradually different cortical types inside the allocortical ring. Rodents had fewer rings and primates had more rings in the inner part of the cortex. In the present article, we perform cortical type analysis of the neocortex of adult rats, Rhesus macaques, and humans to propose hypotheses on homology of cortical areas applying the principles of the Hypothesis on the Dual Origin of the Neocortex. We show that areas in the outer rings of the neocortex have comparable laminar elaboration in rats and primates, while most 6-layer eulaminate areas in the innermost rings of primate neocortex lack homologous counterparts in rats. We also represent the topological distribution of cortical types in simplified flat maps of the cerebral cortex of monotremes, rats, and primates. Finally, we propose an elaboration of the Hypothesis on the Dual Origin of the Neocortex in the context of modern studies of pallial patterning that integrates the specification of pallial sectors in development of vertebrate embryos. The updated version of the hypothesis of Sanides provides explanation for the emergence of cortical hierarchies in mammals and will guide future research in the phylogenetic origin of neocortical areasThis work was supported by grants from the National Institute of Mental Health to BZ (Grant Nos. R01 MH101209 and R01 MH118500). MAG-C was the recipient of a Beatriz Galindo senior research position in the Faculty of Medicine at Universidad Autónoma de Madrid (BEAGAL18/00098) and of a Grant for I+D Projects by the Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with Universidad Autónoma de Madrid in the line of action encouraging youth research doctors, in the context of the V PRICIT (Regional Program of Research and Technological Innovation), reference: SI2/PBG/2020-0001

    Stereotaxic cutting of post-mortem human brains for neuroanatomical studies

    Full text link
    Stereotaxis is widely used in clinical neurosurgery, neuroradiosurgery, and neuroimaging. Yet, maps of brain structures obtained from post-mortem human brains are not usually presented in known stereotaxic coordinates. Post-mortem brain data given in stereotaxic coordinates would facilitate comparisons with in vivo human neuroimages and would also facilitate intra and inter-experiment comparisons. In this article, we present a crafted instrument for stereotaxic cutting of post-mortem human brain hemispheres. The instrument consists of a transparent methacrylate plate facing a mirror, four legs, and lateral regularly spaced columns permitting the insertion of large knives in-between the columns. This instrument can be built in any laboratory to obtain human brain slabs in the stereotaxic space of Talairach and Tournoux. We explain in detail the procedure for stereotaxic cutting of human brain hemispheres in the coronal plane, as well as the basis for calculating stereotaxic coordinates of histological sections obtained following the stereotaxic cutting protoco

    Mapping the primate thalamus: systematic approach to analyze the distribution of subcortical neuromodulatory afferents

    Full text link
    Neuromodulatory afferents to thalamic nuclei are key for information transmission and thus play critical roles in sensory, motor, and limbic processes. Over the course of the last decades, diverse attempts have been made to map and describe subcortical neuromodulatory afferents to the primate thalamus, including axons using acetylcholine, serotonin, dopamine, noradrenaline, adrenaline, and histamine. Our group has been actively involved in this endeavor. The published descriptions on neuromodulatory afferents to the primate thalamus have been made in different laboratories and are not fully comparable due to methodological divergences (for example, fixation procedures, planes of cutting, techniques used to detect the afferents, different criteria for identification of thalamic nuclei…). Such variation affects the results obtained. Therefore, systematic methodological and analytical approaches are much needed. The present article proposes reproducible methodological and terminological frameworks for primate thalamic mapping. We suggest the use of standard stereotaxic planes to produce and present maps of the primate thalamus, as well as the use of the Anglo-American school terminology (vs. the German school terminology) for identification of thalamic nuclei. Finally, a public repository of the data collected under agreed-on frameworks would be a useful tool for looking up and comparing data on the structure and connections of primate thalamic nuclei. Important and agreed-on efforts are required to create, manage, and fund a unified and homogeneous resource of data on the primate thalamus. Likewise, a firm commitment of the institutions to preserve experimental brain material is much needed because neuroscience work with non-human primates is becoming increasingly rare, making earlier material still more valuableOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. CC and IP-S were the recipients of grants from Chair in Neuroscience UAM-Fundación Tatiana Pérez de Guzmán el Bueno, Spain. MAG-C was the recipient of a Beatriz Galindo senior research position in the School of Medicine, Universidad Autónoma de Madrid (BEAGAL18/00098) and of a Grant for I+D Projects to the Beatriz Galindo Program Researchers at Universidad Autónoma de Madrid (SI2/PBG/2020–00014) from the Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with Universidad Autónoma de Madrid in the line of action encouraging young research doctors, in the context of the V PRICIT (Regional Programme of Research and Technological Innovation

    The epic of the thalamus in anatomical language

    Full text link
    Understanding the origin of Greek and Latin words used as metaphors to label brain structures gives a unique window into how scientific and medical knowledge was produced, preserved, and transmitted through generations. The history of the term thalamus exemplifies the complex historical process that led to the current anatomical terminology. From its first mention by Galen of Pergamon in the 2nd century A.D. to its definitive and current use by Thomas Willis in 1664, the thalamus had an epical journey through 1500 years across Europe, the Middle East, and the North of Africa. The thalamus was confusingly described by Galen, in the Greek language, as a chamber to the brain ventricles. The term thalamus was transferred from Greek to Syriac through the translations of Galen’s books done in Baghdad and also from Syriac to Arabic. Then, it was translated in Europe during the Middle Ages from the Arabic versions of Galen’s books to Latin. Later, during the Early Renaissance, it was translated again to Latin directly from the Greek versions of Galen’s books. Along this epical journey through languages, the term thalamus switched from referring to a hollow structure connected to brain ventricles to naming a solid structure at the rostral end of the brainstem. Finally, the thalamus was translated from Latin to modern languages, where it is used, until today, to name a nuclear complex of subcortical gray matter in the lateral walls of the third ventricl

    Mapping the primate thalamus: historical perspective and modern approaches for defining nuclei

    Full text link
    The primate thalamus has been subdivided into multiple nuclei and nuclear groups based on cytoarchitectonic, myeloarchitectonic, connectional, histochemical, and genoarchitectonic differences. Regarding parcellation and terminology, two main schools prevailed in the twentieth century: the German and the Anglo-American Schools, which proposed rather different schemes. The German parcellation and terminology has been mostly used for the human thalamus in neurosurgery atlases; the Anglo-American parcellation and terminology is the most used in experimental research on the primate thalamus. In this article, we review the historical development of terminological and parcellation schemes for the primate thalamus over the last 200 years. We trace the technological innovations and conceptual advances in thalamic research that underlie each parcellation, from the use of magnifying lenses to contemporary genoarchitectonic stains during ontogeny. We also discuss the advantages, disadvantages, and practical use of each parcellationCC and IP-S were the recipients of grants from Chair in Neuroscience UAM-Fundación Tatiana Pérez de Guzmán el Bueno, Spain. MAG-C was the recipient of a Beatriz Galindo senior research position in the School of Medicine, Universidad Autónoma de Madrid (BEAGAL18/00098) and of a Grant for I + D Projects for the Beatriz Galindo Program Researchers at Universidad Autónoma de Madrid (SI2/PBG/2020-00014) from the Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with Universidad Autónoma de Madrid in the line of action encouraging youth research doctors, in the context of the V PRICIT (Regional Programme of Research and Technological Innovation

    The Structural Model: a theory linking connections, plasticity, pathology, development and evolution of the cerebral cortex

    Full text link
    Published in final edited form as: Brain Struct Funct. 2019 April ; 224(3): 985–1008. doi:10.1007/s00429-019-01841-9.The classical theory of cortical systematic variation has been independently described in reptiles, monotremes, marsupials and placental mammals, including primates, suggesting a common bauplan in the evolution of the cortex. The Structural Model is based on the systematic variation of the cortex and is a platform for advancing testable hypotheses about cortical organization and function across species, including humans. The Structural Model captures the overall laminar structure of areas by dividing the cortical architectonic continuum into discrete categories (cortical types), which can be used to test hypotheses about cortical organization. By type, the phylogenetically ancient limbic cortices-which form a ring at the base of the cerebral hemisphere-are agranular if they lack layer IV, or dysgranular if they have an incipient granular layer IV. Beyond the dysgranular areas, eulaminate type cortices have six layers. The number and laminar elaboration of eulaminate areas differ depending on species or cortical system within a species. The construct of cortical type retains the topology of the systematic variation of the cortex and forms the basis for a predictive Structural Model, which has successfully linked cortical variation to the laminar pattern and strength of cortical connections, the continuum of plasticity and stability of areas, the regularities in the distribution of classical and novel markers, and the preferential vulnerability of limbic areas to neurodegenerative and psychiatric diseases. The origin of cortical types has been recently traced to cortical development, and helps explain the variability of diseases with an onset in ontogeny.R01 MH057414 - NIMH NIH HHS; R01 MH101209 - NIMH NIH HHS; R01 MH101209 - National Institute of Mental Health; R01 MH057414 - National Institute of Mental Health; R01 MH117785 - NIMH NIH HHS; R01 MH117785 - National Institute of Mental Health; R01 NS024760 - National Institute of Neurological Disorders and Stroke (US); R01 NS024760 - NINDS NIH HHSAccepted manuscrip

    Insuficiencia hepática en un neonato de 24 días

    Get PDF
    Historia clínica:  Neonato de 24 días de vida, insuficiencia hepática desde el nacimiento

    The intercalated nuclear complex of the primate amygdala

    Get PDF
    Published in final edited form as: Neuroscience. 2016 August 25; 330: 267–290. doi:10.1016/j.neuroscience.2016.05.0.The organization of the inhibitory intercalated cell masses (IM) of the primate amygdala is largely unknown despite their key role in emotional processes. We studied the structural, topographic, neurochemical and intrinsic connectional features of IM neurons in the rhesus monkey brain. We found that the intercalated neurons are not confined to discrete cell clusters, but form a neuronal net that is interposed between the basal nuclei and extends to the dorsally located anterior, central, and medial nuclei of the amygdala. Unlike the IM in rodents, which are prominent in the anterior half of the amygdala, the primate inhibitory net stretched throughout the antero-posterior axis of the amygdala, and was most prominent in the central and posterior extent of the amygdala. There were two morphologic types of intercalated neurons: spiny and aspiny. Spiny neurons were the most abundant; their somata were small or medium size, round or elongated, and their dendritic trees were round or bipolar, depending on location. The aspiny neurons were on average slightly larger and had varicose dendrites with no spines. There were three non-overlapping neurochemical populations of IM neurons, in descending order of abundance: (1) Spiny neurons that were positive for the striatal associated dopamine- and cAMP-regulated phosphoprotein (DARPP-32+); (2) Aspiny neurons that expressed the calcium-binding protein calbindin (CB+); and (3) Aspiny neurons that expressed nitric oxide synthase (NOS+). The unique combinations of structural and neurochemical features of the three classes of IM neurons suggest different physiological properties and function. The three types of IM neurons were intermingled and likely interconnected in distinct ways, and were innervated by intrinsic neurons within the amygdala, or by external sources, in pathways that underlie fear conditioning and anxiety.We thank Dr. Alan Peters for EM consultation, Dr. John Fiala for assistance in adapting the free 3D-reconstruction software he developed, Drs. Ron Killiany, Maria Medalla and Clare Timbie for MRI and surgical assistance, Drs. Paul Greengard and Jean-Antoine Girault for their generous gift of the DARPP-32 antibody, and Mrs. Marcia Feinberg for exceptional technical assistance and imaging at the electron microscope. Supported by grants from NIH (BZ: R01 MH101209, HB: R01 MH057414, R01 NS024760) and NSF CELEST (YJ, HB, BZ: 0835976). (R01 MH101209 - NIH; R01 MH057414 - NIH; R01 NS024760 - NIH; 0835976 - NSF CELEST)Accepted manuscrip

    Nutrição à base de nitrogênio, enxofre e magnésio no rendimento do milho (Zea mays L.): Nitrogen, Sulfur and Magnesium based nutrition on corn (Zea mays L.) yield

    Get PDF
    O objetivo deste estudo foi avaliar o efeito da nutrição com nitrogênio, enxofre e magnésio na produtividade do milho (Zea mays L.). O material genético utilizado foi o híbrido DK-7500 desenvolvido pela Monsanto. Os tratamentos consistiram em 3 doses de ureia, 2 doses de sulfato de amônio e 2 doses de sulfato de magnésio, aplicadas 12 e 25 dias após a semeadura. Em todos os tratamentos, 40 kg/ha de P2O5 e 80 kg/ha de K2O foram usados como fertilização básica. Foi utilizado um projeto de blocos aleatórios com arranjo fatorial (A*B*C+1) com treze tratamentos e três réplicas. Os dados avaliados foram: altura da planta, diâmetro do caule, teor de clorofila, teor de proteína, diâmetro e comprimento da espiga, número de grãos por espiga e produtividade. A partir dos resultados, foi determinado que os fertilizantes à base de nitrogênio, enxofre e magnésio aumentaram a concentração de clorofila, proteína e rendimento da cultura do milho; a maior altura de planta foi obtida quando foram aplicados 348 kg/ha de ureia + 250 kg/ha de sulfato de amônio + 250 kg/ha de sulfato de amônio. O diâmetro do caule foi maior com o uso de 348 kg/ha de ureia + 250 kg/ha de sulfato de amônio + 250 kg/ha de sulfato de magnésio + 250 kg/ha de sulfato de magnésio, enquanto a maior concentração de clorofila e proteína também foi obtida com esses mesmos níveis. O maior diâmetro e comprimento de espiga foram obtidos com a aplicação de 348 kg/ha de ureia + 250 kg/ha de sulfato de amônio + 250 kg/ha de sulfato de magnésio. O número de grãos por espiga e o rendimento foram maximizados com o uso de 174 kg/ha de ureia + 250 kg/ha de sulfato de amônio + 250 kg/ha de sulfato de magnésio. &nbsp

    Clinical relevance of the transcriptional signature regulated by CDC42 in colorectal cancer

    Get PDF
    CDC42 is an oncogenic Rho GTPase overexpressed in colorectal cancer (CRC). Although CDC42 has been shown to regulate gene transcription, the specific molecular mechanisms regulating the oncogenic ability of CDC42 remain unknown. Here, we have characterized the transcriptional networks governed by CDC42 in the CRC SW620 cell line using gene expression analysis. Our results establish that several cancer-related signaling pathways, including cell migration and cell proliferation, are regulated by CDC42. This transcriptional signature was validated in two large cohorts of CRC patients and its clinical relevance was also studied. We demonstrate that three CDC42-regulated genes offered a better prognostic value when combined with CDC42 compared to CDC42 alone. In particular, the concordant overexpression of CDC42 and silencing of the putative tumor suppressor gene CACNA2D2 dramatically improved the prognostic value. The CACNA2D2/CDC42 prognostic classifier was further validated in a third CRC cohort as well as in vitro and in vivo CRC models. Altogether, we show that CDC42 has an active oncogenic role in CRC via the transcriptional regulation of multiple cancer-related pathways and that CDC42-mediated silencing of CACNA2D2 is clinically relevant. Our results further support the use of CDC42 specific inhibitors for the treatment of the most aggressive types of CRCThis work has been supported by grants to JCL from Ministerio de Ciencia e Innovación (SAF2008- 03750, RD06-0020-0016 and RD12/0036/0019) and to DGO Cancer Institute New South Wales (2017/CDF625). FVM is a National Breast Cancer Foundation/Cure Cancer Australia Foundation Postdoctoral Training Fellow
    corecore