21 research outputs found

    Composition, distribution and trophic relationships of the fish fauna of the Negro river, Patagonia Argentina

    Get PDF
    La provincia ictiogeográfica Patagónica se caracteriza por una llamativa pobreza de especies. El río Negro es el curso de agua más importante de esta región y a pesar de sus dimensiones e importancia socioeconómica su fauna íctica ha sido poco estudiada. Este trabajo describe algunos aspectos biogeográficos y características ecológicas de su ictiofauna. Se muestrearon estacionalmente cinco sitios a lo largo del río, por medio de redes de enmalle, pesca eléctrica, redes de arrastre costero y atarraya. Se analizó la composición y distribución de peces y se estudió la dieta para determinar los roles tróficos y los niveles de competencia y de piscivoría. Se capturaron ejemplares de 13 especies: siete de origen nativo y seis exóticas, de las cuales se destaca la novedosa presencia de la coridora (Corydoras paleatus) y la carpa común (Cyprinus carpio), ampliando su distribución austral. Las especies más importantes fueron las nativas pejerrey patagónico (Odontesthes hatcheri), perca bocona (Percychthis colhuapiensis), perca de boca chica (P. trucha) y madrecita (Jenynsia multidentata). Los índices ecológicos indican que el curso inferior es diferente al resto del río presentando una dominancia de pejerrey patagónico y madrecita. En este sector se observó una mayor importancia de especies exóticas. Se encontraron ocho grupos tróficos, existencia de solapamientos en las dietas entre componentes nativos y exóticos, y evidencia de piscivoría importante entre las especies. La presencia y distribución de los peces en el río Negro está fuertemente influenciada por fenómenos de antropocoria accidental o intencional. Es necesario desarrollar estudios que analicen el impacto generado por las introducciones y la evolución de las relaciones entre los componentes nativos y exóticos, teniendo en cuenta que la trucha arco iris y la carpa común han influido negativamente en otros lugares del mundo.The Patagonic ictiogeographic region is characterized by a low species diversity. Despite that the Negro river is the most important water body in the region, both in terms of the size of its drainage basin and of its socioeconomic importance, its fish fauna has scarcely been studied. The present paper addresses biogeographic and ecological characteristics related to its fish. Gill net gangs, electro fishing and beach seine nets were used to sample seasonally five stations along the river. Fish fauna composition and distribution were analyzed throughout different ecological indexes. Diet composition was also analyzed to establish trophic roles, competition and piscivory. We caught seven native and six exotic species; two of them (Corydoras paleatus and Cyprinus carpio) represent a widening of their austral distribution. The natives Odontesthes hatcheri, Percychthis colhuapiensis, P. trucha and Jenynsia multidentata were more important in terms of numbers in catches. Ecological indexes show that the lower part of the Negro river differs from the rest of the river with higher numbers of O. hatchery and J. multidentata. Eight trophic groups were found as well as evidence of diet overlapping and considerable piscivory. Presence and distribution of fish in the Negro river is strongly influenced by introduction by men, either accidentally or intentionally. Impacts by introduced species need to be addressed, specially in terms of emerging processes between native and exotic fish, taking into special consideration the negative impacts that the rainbow trout and the carp have already had in different parts of the world

    Euclid. I. Overview of the Euclid mission

    No full text
    The current standard model of cosmology successfully describes a variety of measurements, but the nature of its main ingredients, dark matter and dark energy, remains unknown. Euclid is a medium-class mission in the Cosmic Vision 2015-2025 programme of the European Space Agency (ESA) that will provide high-resolution optical imaging, as well as near-infrared imaging and spectroscopy, over about 14,000 deg^2 of extragalactic sky. In addition to accurate weak lensing and clustering measurements that probe structure formation over half of the age of the Universe, its primary probes for cosmology, these exquisite data will enable a wide range of science. This paper provides a high-level overview of the mission, summarising the survey characteristics, the various data-processing steps, and data products. We also highlight the main science objectives and expected performance

    Euclid. I. Overview of the Euclid mission

    No full text
    International audienceThe current standard model of cosmology successfully describes a variety of measurements, but the nature of its main ingredients, dark matter and dark energy, remains unknown. Euclid is a medium-class mission in the Cosmic Vision 2015-2025 programme of the European Space Agency (ESA) that will provide high-resolution optical imaging, as well as near-infrared imaging and spectroscopy, over about 14,000 deg^2 of extragalactic sky. In addition to accurate weak lensing and clustering measurements that probe structure formation over half of the age of the Universe, its primary probes for cosmology, these exquisite data will enable a wide range of science. This paper provides a high-level overview of the mission, summarising the survey characteristics, the various data-processing steps, and data products. We also highlight the main science objectives and expected performance

    Euclid. I. Overview of the Euclid mission

    No full text
    International audienceThe current standard model of cosmology successfully describes a variety of measurements, but the nature of its main ingredients, dark matter and dark energy, remains unknown. Euclid is a medium-class mission in the Cosmic Vision 2015-2025 programme of the European Space Agency (ESA) that will provide high-resolution optical imaging, as well as near-infrared imaging and spectroscopy, over about 14,000 deg^2 of extragalactic sky. In addition to accurate weak lensing and clustering measurements that probe structure formation over half of the age of the Universe, its primary probes for cosmology, these exquisite data will enable a wide range of science. This paper provides a high-level overview of the mission, summarising the survey characteristics, the various data-processing steps, and data products. We also highlight the main science objectives and expected performance

    Euclid. I. Overview of the Euclid mission

    No full text
    International audienceThe current standard model of cosmology successfully describes a variety of measurements, but the nature of its main ingredients, dark matter and dark energy, remains unknown. Euclid is a medium-class mission in the Cosmic Vision 2015-2025 programme of the European Space Agency (ESA) that will provide high-resolution optical imaging, as well as near-infrared imaging and spectroscopy, over about 14,000 deg^2 of extragalactic sky. In addition to accurate weak lensing and clustering measurements that probe structure formation over half of the age of the Universe, its primary probes for cosmology, these exquisite data will enable a wide range of science. This paper provides a high-level overview of the mission, summarising the survey characteristics, the various data-processing steps, and data products. We also highlight the main science objectives and expected performance

    Euclid. I. Overview of the Euclid mission

    No full text
    International audienceThe current standard model of cosmology successfully describes a variety of measurements, but the nature of its main ingredients, dark matter and dark energy, remains unknown. Euclid is a medium-class mission in the Cosmic Vision 2015-2025 programme of the European Space Agency (ESA) that will provide high-resolution optical imaging, as well as near-infrared imaging and spectroscopy, over about 14,000 deg^2 of extragalactic sky. In addition to accurate weak lensing and clustering measurements that probe structure formation over half of the age of the Universe, its primary probes for cosmology, these exquisite data will enable a wide range of science. This paper provides a high-level overview of the mission, summarising the survey characteristics, the various data-processing steps, and data products. We also highlight the main science objectives and expected performance
    corecore