68 research outputs found

    Despoblación rural. Problemas y soluciones

    Full text link
    Este libro es resultado de un curso que pretende entender los procesos de despoblación rural desde múltiples perspectivas.Se trata de ofrecer un primer conocimiento del diagnóstico, dinámicas sociales, políticas e iniciativas que enfrentan los procesos de despoblación en las áreas rurales. Se dirige a estudiantes, actores municipales, emprendedores, dinamizadores y público general procedentes de distintos campos de conocimiento de la economía, la administración pública, la sociología, la geografía, la empresa, la ciencia política, las ciencias ambientales, la demografía y la agronomía, entre otros campos.García Alvarez-Coque, JM. (2021). Despoblación rural. Problemas y soluciones. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/160237EDITORIA

    El sector agroalimentario y el reto de la innovación

    Full text link
    [ES] Se reflexiona sobre las razones que justifican que exista una política activa de apoyo al conocimiento, tanto a escala europea como nacional. Seguidamente se repasan las oportunidades que ofrece la política europea en este ámbito. Finalmente se revisan críticamente las dificultades que enfrentan los actores agroalimentarios españoles para incorporarse a los sistemas de innovación.García Alvarez-Coque, JM. (2015). El sector agroalimentario y el reto de la innovación. Agricultura familiar en España. 216-221. http://hdl.handle.net/10251/64617S21622

    Destrucción Masiva. Geopolítica del Hambre

    Full text link
    García Alvarez-Coque, JM. (2013). Destrucción Masiva. Geopolítica del Hambre. Historia Agraria. (59):243-245. http://hdl.handle.net/10251/51301S2432455

    Crisis de la agricultura y mercados

    Full text link
    García Alvarez-Coque, JM. (2011). Crisis de la agricultura y mercados. Agricultura familiar en España. 103-110. http://hdl.handle.net/10251/68887S10311

    Measuring Technology Platforms impact with search data and web scraping

    Full text link
    Resumen de la comunicación[EN] In recent years, European research policies and priorities in the agricultural sector have been developed through industry-based partnerships sponsored by the European Commission (EC). In 2004, the EC regulated a form of partnership called European Technology Platform (ETP) with the aim to define research agendas that would attract private investment. Monitoring the impact and performance of public policies, such as the implementation of ETPs, is basic for policy-makers. However, assessing the performance of ETPs frequently result into costly efforts given the current lack of indicators to monitor their variety of activities. In addition, since most ETPs have been set up recently it is difficult to assess their results, which are typically revealed after some time and take a considerable amount of time to be captured and processed with traditional methods such as surveys. In this study, we propose to assess the dynamics of ETPs through measures based on online information, given that it is fresh, available in real-time and is a publicly reflect of the activities of organizations. We firstly consider an ETP as an innovation intermediary and define its functions according to innovation literature. Then, we enumerate the particular activities within each function in which the ETP may be involved. To monitor such functions and activities, some indicators based on online data are proposed. This conceptual basis has been put into practice with a particular case study based on the agri-food technology platform “TP Organics”. Preliminary results show that the online-based indicators are able to measure the level of activity of the platform, if its scope is expanding or reducing, and how the importance of the different functions has evolved over time.Blazquez, D.; Domenech, J.; García Alvarez-Coque, JM. (2018). Measuring Technology Platforms impact with search data and web scraping. En 2nd International Conference on Advanced Reserach Methods and Analytics (CARMA 2018). Editorial Universitat Politècnica de València. 259-259. https://doi.org/10.4995/CARMA2018.2018.8363OCS25925

    Ethical certification in the Spanish agrifood industry: An alternative paradigm?

    Full text link
    [EN] The agrifood sector belongs to traditional industries often supported by the national governments. The quality of the output is directly related to human health and, therefore, several initiatives within the EU have been introduced. These initiatives support the consciousness of the broad public, including the individual agrifood businesses. Besides the marketing standards, geographical indications and organic farming, there are also national and private certification schemes. All these tendencies aim to promote the socio-ethical principles of the business to support the non-monetary issues related to the agrifood sector. This paper provides a closer exploration of the socio-ethical aspects of companies in the Spanish agrifood sector. Any awareness of these principles in the daily business routine can be considered as a potential competitive advantage for an individual company. The objective of the paper is to examine whether there are significant differences among individual sub-industries within the Spanish agrifood sector in terms of social and ethical aspects. A sample of 66,047 different agrifood companies in the year 2012 was examined. Results of empirical tests prove that there are significant differences between the agricultural producers, manufacturers, wholesalers, and retailers.Nováková, K.; Compes López, R.; García Alvarez-Coque, JM. (2016). Ethical certification in the Spanish agrifood industry: An alternative paradigm?. Society and Economy (Online). 38(3):399-411. doi:10.1556/204.2016.38.3.839941138

    El regadío histórico de la Huerta de València (España) como Sistema Importante del Patrimonio Agrícola Mundial (SIPAM)

    Full text link
    [EN] The Globally Important Agricultural Heritage Systems (GIAHS) defined by FAO are sustainable and active territorial systems with landscapes of great value, rich in agrobiodiversity and the result of dialogue and mutual adaptation between people and their environment. They represent dynamic sites defined not only by geographic conditions, but also by agrarian history, tradition, and culture. The article, in the first place, reviews the concept and characteristics of a GIAHS territory and its extension at the international level. Secondly, it presents the results of the participatory process of formulation of a GIAHS candidature for the case of the historical irrigation of the Huerta de Valencia (Valencian Community, Spain), with the application of the criteria established for its recognition as GIAHS at the end of 2019 and its corresponding action plan. It is a historical region that forms a landscape of fields watered by a system of channels of medieval origin and encompasses a set of peri-urban agricultural areas ¿among them, Mediterranean orchards, rice crops and artisanal fishing in Albufera. The traditional management of water for irrigation that allows stabilizing the supply and demand of the resource is an exemplary feature for the planet, while allowing the GIAHS de l¿Horta to adapt to the new trends of development for sustainable use. As a resilient system, it is not exempt from the problems and challenges that affect the rest of the agri-food systems, so this action plan must not only be compatible with the territorial planning and rural development plans, but must also converge with territorial policies. of this peri-urban environment, as well as with the urban food strategies outlined by the metropolitan municipalities and the involvement of the different actors ¿universities, foundations, the agrarian community and other agents of civil society¿.[ES] Los Sistemas Importantes del Patrimonio Agrícola Mundial (SIPAM) definidos por FAO son sistemas territoriales sostenibles y activos con paisajes de gran valor, ricos en agrobiodiversidad y fruto del diálogo y la adaptación mutua entre las personas y su entorno. Representan sitios dinámicos definidos no solo por unas condiciones geográficas, sino también por una historia, una tradición y una cultura agrarias. El artículo, en primer lugar, revisa el concepto y características de un territorio SIPAM y su extensión a nivel internacional. En segundo lugar expone los resultados del proceso participativo de formulación de una candidatura SIPAM para el caso del regadío histórico de la Huerta de Valencia (l¿Horta de València, Comunidad Valenciana, España), con la aplicación de los criterios establecidos para su reconocimiento como SIPAM a finales del 2019 y de su correspondiente plan de acción. Se trata de una región histórica que conforma un paisaje de campos regados por un sistema de canales de origen medieval y abarca un conjunto de zonas agrícolas periurbanas ¿entre ellos, huertos mediterráneos, cultivos de arroz y pesca artesanal en la Albufera¿. La gestión tradicional del agua para regadío que permite estabilizar la oferta y demanda del recurso es ejemplar para el planeta, al tiempo que permite al SIPAM de l¿Horta adaptarse a las nuevas corrientes de desarrollo para un uso sostenible. En tanto sistema resiliente tampoco está exento de los problemas y desafíos que afectan al resto de los sistemas agroalimentarios, por lo que dicho plan de acción no solo deberá ser compatible con los planes de ordenación territorial y de desarrollo rural, sino que además ha de converger con las políticas territoriales de este entorno periurbano, así como con las estrategias alimentarias urbanas delineadas por los ayuntamientos metropolitanos y la implicación de los distintos actores ¿ universidades, fundaciones, comunidad agraria y otros agentes de la sociedad civil¿.García Alvarez-Coque, JM.; Bigné, G. (2020). El regadío histórico de la Huerta de València (España) como Sistema Importante del Patrimonio Agrícola Mundial (SIPAM). AGROALIMENTARIA. 26(50):281-301. http://hdl.handle.net/10251/166137S281301265

    Innovation and sectoral linkages in the agri-food system in the Valencian Community

    Get PDF
    This paper aims to analyze the innovative effort of the agri-food system (AFS) in the Valencian Autonomous Community (VC), Spain, estimating the intensity of innovation in each subsector of the AFS. The analysis distinguishes between the direct and indirect (or induced) innovation intensities incorporated by the acquisition of inputs from other subsectors produced in the VC or in the rest of Spain. The methodology employed is based on the input-output framework combined with data of technological innovation in enterprises. This methodology provides the novelty of been applied to a region the VC and not to a country as it is usually done. The results show that the weight of intersectoral flows in the total innovation effort of the AFS is significant with marked differences between primary and food industry. In most activities, embodied knowledge in inputs purchased from Spain is greater than embodied knowledge of inputs produced inside the region.Authors would like to thank the Ministry of Science and innovation for its support for this paper (Project AGRINNOVA; reference: AGL2009-13303-C02-02).García Alvarez-Coque, JM.; Alba ., MF.; López-García Usach, T. (2012). Innovation and sectoral linkages in the agri-food system in the Valencian Community. SPANISH JOURNAL OF AGRICULTURAL RESEARCH. REVISTA DE INVESTIGACION AGRARIA. 10(1):18-28. https://doi.org/10.5424/sjar/2012101-207-11S1828101McKENZIE, D., & O’NIONS, R. K. (1991). Partial Melt Distributions from Inversion of Rare Earth Element Concentrations. Journal of Petrology, 32(5), 1021-1091. doi:10.1093/petrology/32.5.102

    The effects on European importers' food safety controls in the time of COVID-19

    Full text link
    [EN] COVID-19 has highlighted the fragility of the global economic system. In just a few months, the consequences of the pandemic have left their mark on the affected countries at all levels and without exception. This article analyses the profile of food safety notifications reported by European countries in the first five months of 2020. The aim was to detect possible changes in food safety regulations imposed by control authorities that could aggravate the economic impacts of the pandemic. While COVID-19 does not appear to be a foodborne disease, some outbreaks have been linked to imported food, which might have affected the food control behaviour of importing countries. In this study, contingency tables and clustering were used to assess differences between years and notification characteristics and to detect homogeneous groups to help identify how the reported notifications might have changed. In the period considered in this study, the volume of notifications on most imported foodstuffs decreased considerably. This decrease was a direct consequence of the fall in international trade, which might have increased countries' reliance on domestic sources. The COVID-19 crisis has not caused a substantial change in the profile of European countries¿ in terms of the characteristics of reported notifications (product category and risk decision). However, the worst affected countries have replaced border rejections with alerts, which may indicate greater reliance on intra-EU markets.This research was supported by grant RTI2018-093791-B-C22 funded by Ministry of Science (Spain) and European Regional Development FundMartí Selva, ML.; Puertas Medina, RM.; García Alvarez-Coque, JM. (2021). The effects on European importers' food safety controls in the time of COVID-19. Food Control. 125:1-11. https://doi.org/10.1016/j.foodcont.2021.107952S11112

    Food Supply without Risk: Multicriteria Analysis of Institutional Conditions of Exporters

    Full text link
    [EN] International trade in food knows no borders, hence the need for prevention systems to avoid the consumption of products that are harmful to health. This paper proposes the use of multicriteria risk prevention tools that consider the socioeconomic and institutional conditions of food exporters. We propose the use of three decision-making methods-Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS), Elimination et Choix Traduisant la Realite (ELECTRE), and Cross-Efficiency (CE)-to establish a ranking of countries that export cereals to the European Union, based on structural criteria related to the detection of potential associated risks (notifications, food quality, corruption, environmental sustainability in agriculture, and logistics). In addition, the analysis examines whether the wealth and institutional capacity of supplier countries influence their position in the ranking. The research was carried out biannually over the period from 2012-2016, allowing an assessment to be made of the possible stability of the markets. The results reveal that suppliers' rankings based exclusively on aspects related to food risk differ from importers' actual choices determined by micro/macroeconomic features (price, production volume, and economic growth). The rankings obtained by the three proposed methods are not the same, but present certain similarities, with the ability to discern countries according to their level of food risk. The proposed methodology can be applied to support sourcing strategies. In the future, food safety considerations could have increased influence in importing decisions, which would involve further difficulties for low-income countries.Ministry of Science and Innovation (Spain) and European Commission-ERDF. Project "Strengthening innovation policy in the agri-food sector" (RTI2018-093791-B-C22).Puertas Medina, RM.; Martí Selva, ML.; García Alvarez-Coque, JM. (2020). Food Supply without Risk: Multicriteria Analysis of Institutional Conditions of Exporters. International Journal of Environmental research and Public Health. 17(10):1-21. https://doi.org/10.3390/ijerph17103432S1211710Walker, E., & Jones, N. (2002). An assessment of the value of documenting food safety in small and less developed catering businesses. Food Control, 13(4-5), 307-314. doi:10.1016/s0956-7135(02)00036-1Sun, Y.-M., & Ockerman, H. W. (2005). A review of the needs and current applications of hazard analysis and critical control point (HACCP) system in foodservice areas. Food Control, 16(4), 325-332. doi:10.1016/j.foodcont.2004.03.012Rohr, J. R., Barrett, C. B., Civitello, D. J., Craft, M. E., Delius, B., DeLeo, G. A., … Tilman, D. (2019). Emerging human infectious diseases and the links to global food production. Nature Sustainability, 2(6), 445-456. doi:10.1038/s41893-019-0293-3De Jonge, J., van Trijp, J. C. M., van der Lans, I. A., Renes, R. J., & Frewer, L. J. (2008). How trust in institutions and organizations builds general consumer confidence in the safety of food: A decomposition of effects. Appetite, 51(2), 311-317. doi:10.1016/j.appet.2008.03.008Neill, C. L., & Holcomb, R. B. (2019). Does a food safety label matter? Consumer heterogeneity and fresh produce risk perceptions under the Food Safety Modernization Act. Food Policy, 85, 7-14. doi:10.1016/j.foodpol.2019.04.001Wood, V. R., & Robertson, K. R. (2000). Evaluating international markets. International Marketing Review, 17(1), 34-55. doi:10.1108/02651330010314704Jouanjean, M.-A., Maur, J.-C., & Shepherd, B. (2015). Reputation matters: Spillover effects for developing countries in the enforcement of US food safety measures. Food Policy, 55, 81-91. doi:10.1016/j.foodpol.2015.06.001Van Ruth, S. M., Huisman, W., & Luning, P. A. (2017). Food fraud vulnerability and its key factors. Trends in Food Science & Technology, 67, 70-75. doi:10.1016/j.tifs.2017.06.017Baylis, K., Nogueira, L., & Pace, K. (2010). Food Import Refusals: Evidence from the European Union. American Journal of Agricultural Economics, 93(2), 566-572. doi:10.1093/ajae/aaq149Bouzembrak, Y., & Marvin, H. J. P. (2016). Prediction of food fraud type using data from Rapid Alert System for Food and Feed (RASFF) and Bayesian network modelling. Food Control, 61, 180-187. doi:10.1016/j.foodcont.2015.09.026Tudela-Marco, L., Garcia-Alvarez-Coque, J. M., & Martí-Selva, L. (2016). Do EU Member States Apply Food Standards Uniformly? A Look at Fruit and Vegetable Safety Notifications. JCMS: Journal of Common Market Studies, 55(2), 387-405. doi:10.1111/jcms.12503Verhaelen, K., Bauer, A., Günther, F., Müller, B., Nist, M., Ülker Celik, B., … Wallner, P. (2018). Anticipation of food safety and fraud issues: ISAR - A new screening tool to monitor food prices and commodity flows. Food Control, 94, 93-101. doi:10.1016/j.foodcont.2018.06.029Garcia‐Alvarez‐Coque, J., Taghouti, I., & Martinez‐Gomez, V. (2020). Changes in Aflatoxin Standards: Implications for EU Border Controls of Nut Imports. Applied Economic Perspectives and Policy, 42(3), 524-541. doi:10.1093/aepp/ppy036Fischer, A. R. H., de Jong, A. E. I., de Jonge, R., Frewer, L. J., & Nauta, M. J. (2005). Improving Food Safety in the Domestic Environment: The Need for a Transdisciplinary Approach. Risk Analysis, 25(3), 503-517. doi:10.1111/j.1539-6924.2005.00618.xHoughton, J. R., Rowe, G., Frewer, L. J., Van Kleef, E., Chryssochoidis, G., Kehagia, O., … Strada, A. (2008). The quality of food risk management in Europe: Perspectives and priorities. Food Policy, 33(1), 13-26. doi:10.1016/j.foodpol.2007.05.001Demortain, D. (2012). Enabling global principle-based regulation: The case of risk analysis in the Codex Alimentarius. Regulation & Governance, 6(2), 207-224. doi:10.1111/j.1748-5991.2012.01144.xFAZIL, A., RAJIC, A., SANCHEZ, J., & MCEWEN, S. (2008). Choices, Choices: The Application of Multi-Criteria Decision Analysis to a Food Safety Decision-Making Problem. Journal of Food Protection, 71(11), 2323-2333. doi:10.4315/0362-028x-71.11.2323Ruzante, J. M., Davidson, V. J., Caswell, J., Fazil, A., Cranfield, J. A. L., Henson, S. J., … Farber, J. M. (2010). A Multifactorial Risk Prioritization Framework for Foodborne Pathogens. Risk Analysis, 30(5), 724-742. doi:10.1111/j.1539-6924.2009.01278.xMazzocchi, M., Ragona, M., & Zanoli, A. (2013). A fuzzy multi-criteria approach for the ex-ante impact assessment of food safety policies. Food Policy, 38, 177-189. doi:10.1016/j.foodpol.2012.11.011Govindan, K., Kadziński, M., & Sivakumar, R. (2017). Application of a novel PROMETHEE-based method for construction of a group compromise ranking to prioritization of green suppliers in food supply chain. Omega, 71, 129-145. doi:10.1016/j.omega.2016.10.004Segura, M., Maroto, C., & Segura, B. (2019). Quantifying the Sustainability of Products and Suppliers in Food Distribution Companies. Sustainability, 11(21), 5875. doi:10.3390/su11215875Lau, H., Nakandala, D., & Shum, P. K. (2018). A business process decision model for fresh-food supplier evaluation. Business Process Management Journal, 24(3), 716-744. doi:10.1108/bpmj-01-2016-0015Garcia-Alvarez-Coque, J.-M., Abdullateef, O., Fenollosa, L., Ribal, J., Sanjuan, N., & Soriano, J. M. (2020). Integrating sustainability into the multi-criteria assessment of urban dietary patterns. Renewable Agriculture and Food Systems, 36(1), 69-76. doi:10.1017/s174217051900053xGrant, W. (2012). Economic patriotism in European agriculture. Journal of European Public Policy, 19(3), 420-434. doi:10.1080/13501763.2011.640797Maye, D., & Kirwan, J. (2013). Food security: A fractured consensus. Journal of Rural Studies, 29, 1-6. doi:10.1016/j.jrurstud.2012.12.001Anthony, R. (2011). Taming the Unruly Side of Ethics: Overcoming Challenges of a Bottom-Up Approach to Ethics in the Areas of Food Policy and Climate Change. Journal of Agricultural and Environmental Ethics, 25(6), 813-841. doi:10.1007/s10806-011-9358-7MacMillan, T., & Dowler, E. (2011). Just and Sustainable? Examining the Rhetoric and Potential Realities of UK Food Security. Journal of Agricultural and Environmental Ethics, 25(2), 181-204. doi:10.1007/s10806-011-9304-8Jaud, M., Cadot, O., & Suwa-Eisenmann, A. (2013). Do food scares explain supplier concentration? An analysis of EU agri-food imports. European Review of Agricultural Economics, 40(5), 873-890. doi:10.1093/erae/jbs038Spink, J., Fortin, N. D., Moyer, D. C., Miao, H., & Wu, Y. (2016). Food Fraud Prevention: Policy, Strategy, and Decision-Making – Implementation Steps for a Government Agency or Industry. CHIMIA International Journal for Chemistry, 70(5), 320-328. doi:10.2533/chimia.2016.320Van Ruth, S. M., Luning, P. A., Silvis, I. C. J., Yang, Y., & Huisman, W. (2018). Differences in fraud vulnerability in various food supply chains and their tiers. Food Control, 84, 375-381. doi:10.1016/j.foodcont.2017.08.020Xidonas, P., & Psarras, J. (2009). Equity portfolio management within the MCDM frame: a literature review. International Journal of Banking, Accounting and Finance, 1(3), 285. doi:10.1504/ijbaaf.2009.022717Melo, M. T., Nickel, S., & Saldanha-da-Gama, F. (2009). Facility location and supply chain management – A review. European Journal of Operational Research, 196(2), 401-412. doi:10.1016/j.ejor.2008.05.007Mandic, K., Delibasic, B., Knezevic, S., & Benkovic, S. (2014). Analysis of the financial parameters of Serbian banks through the application of the fuzzy AHP and TOPSIS methods. Economic Modelling, 43, 30-37. doi:10.1016/j.econmod.2014.07.036Uygun, Ö., Kaçamak, H., & Kahraman, Ü. A. (2015). An integrated DEMATEL and Fuzzy ANP techniques for evaluation and selection of outsourcing provider for a telecommunication company. Computers & Industrial Engineering, 86, 137-146. doi:10.1016/j.cie.2014.09.014Wanke, P., Azad, M. D. A. K., & Barros, C. P. (2016). Predicting efficiency in Malaysian Islamic banks: A two-stage TOPSIS and neural networks approach. Research in International Business and Finance, 36, 485-498. doi:10.1016/j.ribaf.2015.10.002Stojčić, M., Zavadskas, E., Pamučar, D., Stević, Ž., & Mardani, A. (2019). Application of MCDM Methods in Sustainability Engineering: A Literature Review 2008–2018. Symmetry, 11(3), 350. doi:10.3390/sym11030350Xu, L., Shah, S. A. A., Zameer, H., & Solangi, Y. A. (2019). Evaluating renewable energy sources for implementing the hydrogen economy in Pakistan: a two-stage fuzzy MCDM approach. Environmental Science and Pollution Research, 26(32), 33202-33215. doi:10.1007/s11356-019-06431-0Huang, I. B., Keisler, J., & Linkov, I. (2011). Multi-criteria decision analysis in environmental sciences: Ten years of applications and trends. Science of The Total Environment, 409(19), 3578-3594. doi:10.1016/j.scitotenv.2011.06.022Pons, O., de la Fuente, A., & Aguado, A. (2016). The Use of MIVES as a Sustainability Assessment MCDM Method for Architecture and Civil Engineering Applications. Sustainability, 8(5), 460. doi:10.3390/su8050460Shishegaran, A., Shishegaran, A., Mazzulla, G., & Forciniti, C. (2020). A Novel Approach for a Sustainability Evaluation of Developing System Interchange: The Case Study of the Sheikhfazolah-Yadegar Interchange, Tehran, Iran. International Journal of Environmental Research and Public Health, 17(2), 435. doi:10.3390/ijerph17020435Wu, H.-Y., Chen, J.-K., Chen, I.-S., & Zhuo, H.-H. (2012). Ranking universities based on performance evaluation by a hybrid MCDM model. Measurement, 45(5), 856-880. doi:10.1016/j.measurement.2012.02.009Shakouri G., H., & Tavassoli N., Y. (2012). Implementation of a hybrid fuzzy system as a decision support process: A FAHP–FMCDM–FIS composition. Expert Systems with Applications, 39(3), 3682-3691. doi:10.1016/j.eswa.2011.09.063Mavi, R. K., Goh, M., & Mavi, N. K. (2016). Supplier Selection with Shannon Entropy and Fuzzy TOPSIS in the Context of Supply Chain Risk Management. Procedia - Social and Behavioral Sciences, 235, 216-225. doi:10.1016/j.sbspro.2016.11.017Montgomery, B., Dragićević, S., Dujmović, J., & Schmidt, M. (2016). A GIS-based Logic Scoring of Preference method for evaluation of land capability and suitability for agriculture. Computers and Electronics in Agriculture, 124, 340-353. doi:10.1016/j.compag.2016.04.013Debnath, A., Roy, J., Kar, S., Zavadskas, E., & Antucheviciene, J. (2017). A Hybrid MCDM Approach for Strategic Project Portfolio Selection of Agro By-Products. Sustainability, 9(8), 1302. doi:10.3390/su9081302Seyedmohammadi, J., Sarmadian, F., Jafarzadeh, A. A., Ghorbani, M. A., & Shahbazi, F. (2018). Application of SAW, TOPSIS and fuzzy TOPSIS models in cultivation priority planning for maize, rapeseed and soybean crops. Geoderma, 310, 178-190. doi:10.1016/j.geoderma.2017.09.012Rostamzadeh, R., Ghorabaee, M. K., Govindan, K., Esmaeili, A., & Nobar, H. B. K. (2018). Evaluation of sustainable supply chain risk management using an integrated fuzzy TOPSIS- CRITIC approach. Journal of Cleaner Production, 175, 651-669. doi:10.1016/j.jclepro.2017.12.071Raut, R. D., Gardas, B. B., Kharat, M., & Narkhede, B. (2018). Modeling the drivers of post-harvest losses – MCDM approach. Computers and Electronics in Agriculture, 154, 426-433. doi:10.1016/j.compag.2018.09.035Qureshi, M. R. N., Singh, R. K., & Hasan, M. A. (2017). Decision support model to select crop pattern for sustainable agricultural practices using fuzzy MCDM. Environment, Development and Sustainability, 20(2), 641-659. doi:10.1007/s10668-016-9903-7Srinivasa Rao, C., Kareemulla, K., Krishnan, P., Murthy, G. R. K., Ramesh, P., Ananthan, P. S., & Joshi, P. K. (2019). Agro-ecosystem based sustainability indicators for climate resilient agriculture in India: A conceptual framework. Ecological Indicators, 105, 621-633. doi:10.1016/j.ecolind.2018.06.038Paul, M., Negahban-Azar, M., Shirmohammadi, A., & Montas, H. (2020). Assessment of agricultural land suitability for irrigation with reclaimed water using geospatial multi-criteria decision analysis. Agricultural Water Management, 231, 105987. doi:10.1016/j.agwat.2019.105987Balezentis, T., Chen, X., Galnaityte, A., & Namiotko, V. (2020). Optimizing crop mix with respect to economic and environmental constraints: An integrated MCDM approach. Science of The Total Environment, 705, 135896. doi:10.1016/j.scitotenv.2019.135896Jahan, A., & Edwards, K. L. (2013). VIKOR method for material selection problems with interval numbers and target-based criteria. Materials & Design, 47, 759-765. doi:10.1016/j.matdes.2012.12.072Pourhejazy, P., Kwon, O., Chang, Y.-T., & Park, H. (2017). Evaluating Resiliency of Supply Chain Network: A Data Envelopment Analysis Approach. Sustainability, 9(2), 255. doi:10.3390/su9020255Stewart, T. J. (1996). Relationships between Data Envelopment Analysis and Multicriteria Decision Analysis. Journal of the Operational Research Society, 47(5), 654-665. doi:10.1057/jors.1996.77Li, X.-B., & Reeves, G. R. (1999). A multiple criteria approach to data envelopment analysis. European Journal of Operational Research, 115(3), 507-517. doi:10.1016/s0377-2217(98)00130-1Zavadskas, E. K., Turskis, Z., & Kildienė, S. (2014). STATE OF ART SURVEYS OF OVERVIEWS ON MCDM/MADM METHODS. Technological and Economic Development of Economy, 20(1), 165-179. doi:10.3846/20294913.2014.892037Mousavi-Nasab, S. H., & Sotoudeh-Anvari, A. (2017). A comprehensive MCDM-based approach using TOPSIS, COPRAS and DEA as an auxiliary tool for material selection problems. Materials & Design, 121, 237-253. doi:10.1016/j.matdes.2017.02.041Bouyssou, D. (1999). Using DEA as a tool for MCDM: some remarks. Journal of the Operational Research Society, 50(9), 974-978. doi:10.1057/palgrave.jors.2600800Özcan, T., Çelebi, N., & Esnaf, Ş. (2011). Comparative analysis of multi-criteria decision making methodologies and implementation of a warehouse location selection problem. Expert Systems with Applications, 38(8), 9773-9779. doi:10.1016/j.eswa.2011.02.022LOKEN, E. (2007). Use of multicriteria decision analysis methods for energy planning problems. Renewable and Sustainable Energy Reviews, 11(7), 1584-1595. doi:10.1016/j.rser.2005.11.005Darji, V. P., & Rao, R. V. (2014). Intelligent Multi Criteria Decision Making Methods for Material Selection in Sugar Industry. Procedia Materials Science, 5, 2585-2594. doi:10.1016/j.mspro.2014.07.519Ceballos, B., Lamata, M. T., & Pelta, D. A. (2016). A comparative analysis of multi-criteria decision-making methods. Progress in Artificial Intelligence, 5(4), 315-322. doi:10.1007/s13748-016-0093-1Sen, B., Bhattacharjee, P., & Mandal, U. K. (2016). A comparative study of some prominent multi criteria decision making methods for connecting rod material selection. Perspectives in Science, 8, 547-549. doi:10.1016/j.pisc.2016.06.016Wu, D. (2006). A note on DEA efficiency assessment using ideal point: An improvement of Wang and Luo’s model. Applied Mathematics and Computation, 183(2), 819-830. doi:10.1016/j.amc.2006.06.030Kou, G., Peng, Y., & Wang, G. (2014). Evaluation of clustering algorithms for financial risk analysis using MCDM methods. Information Sciences, 275, 1-12. doi:10.1016/j.ins.2014.02.137Roy, B. (1991). The outranking approach and the foundations of electre methods. Theory and Decision, 31(1), 49-73. doi:10.1007/bf00134132YOON, K., & HWANG, C.-L. (1985). Manufacturing plant location analysis by multiple attribute decision making: part I—single-plant strategy. International Journal of Production Research, 23(2), 345-359. doi:10.1080/00207548508904712Doyle, J., & Green, R. (1994). Efficiency and Cross-efficiency in DEA: Derivations, Meanings and Uses. Journal of the Operational Research Society, 45(5), 567-578. doi:10.1057/jors.1994.84Martí, L., Martín, J. C., & Puertas, R. (2017). A Dea-Logistics Performance Index. Journal of Applied Economics, 20(1), 169-192. doi:10.1016/s1514-0326(17)30008-9Canadá y la UE: Si Quierohttps://www.Euroganadería.euKARABIYIK, C., & KUTLU KARABIYIK, B. (2018). Benchmarking International Trade Performance of OECD Countries: TOPSIS and AHP Approaches. Gaziantep University Journal of Social Sciences. doi:10.21547/jss.267381Lin, M.-C., Wang, C.-C., Chen, M.-S., & Chang, C. A. (2008). Using AHP and TOPSIS approaches in customer-driven product design process. Computers in Industry, 59(1), 17-31. doi:10.1016/j.compind.2007.05.013Lourenzutti, R., & Krohling, R. A. (2016). A generalized TOPSIS method for group decision making with heterogeneous information in a dynamic environment. Information Sciences, 330, 1-18. doi:10.1016/j.ins.2015.10.005Roy, B. (1968). Classement et choix en présence de points de vue multiples. Revue française d’informatique et de recherche opérationnelle, 2(8), 57-75. doi:10.1051/ro/196802v100571Jaini, N., & Utyuzhnikov, S. (2016). Trade-off ranking method for multi-criteria decision analysis. Journal of Multi-Criteria Decision Analysis, 24(3-4), e1600. doi:10.1002/mcda.1600Farrell, M. J. (1957). The Measurement of Productive Efficiency. Journal of the Royal Statistical Society. Series A (General), 120(3), 253. doi:10.2307/2343100Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444. doi:10.1016/0377-2217(78)90138-8Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Management Science, 30(9), 1078-1092. doi:10.1287/mnsc.30.9.1078Angulo-Meza, L., & Lins, M. P. E. (2002). Annals of Operations Research, 116(1/4), 225-242. doi:10.1023/a:1021340616758Falagario, M., Sciancalepore, F., Costantino, N., & Pietroforte, R. (2012). Using a DEA-cross efficiency approach in public procurement tenders. European Journal of Operational Research, 218(2), 523-529. doi:10.1016/j.ejor.2011.10.031Puertas, R., & Marti, L. (2019). Sustainability in Universities: DEA-GreenMetric. Sustainability, 11(14), 3766. doi:10.3390/su1114376
    corecore