311 research outputs found

    Tailoring the magnetocaloric, magnetic and thermal properties of Dy6(Fe,Mn)X2 intermetallics (X==Sb, Te, Bi)

    Get PDF
    [EN] The structural, magnetic, magnetocaloric (MCE) and thermal properties of seven Fe2P-type Dy6(Fe,Mn)X2 (X=Sb, Bi, Te) intermetallics (space group P 6 over line 2 m, N 189, hP9) have been experimentally studied. They present a paramagnetic to ferromagnetic transition (in the range 129-370 K), followed, as temperature decreases, by a spin-reorientation one (from 52 to 170 K) and a ground magnetic state at 2 K with anti-ferromagnetic components. This state turns into a ferromagnetic state when a magnetic field is applied. The critical exponents beta,gamma,delta related to the PM-FM transition point to long range order interactions but in most compounds their values severely deviate from the Mean Field class, presenting an unconventional critical behavior, probably due to magnetocrystalline anisotropies. This magnetic complexity has the consequence that in every intermetallic three MCE effects arise: Two direct magnetocaloric effects (DMCE) with a table-like effect in between (from 40 K to more than 400 K), with moderate values of the magnetic entropy maxima (up to 6.9 J/kgK for 140 Delta H = 5 T, with the tableau in-between being around 4 J/kgK, for Dy6FeSb2 and Dy6FeSbTe). The calculation of the Thermal Average Entropy Change allows to place the properties of two compounds (Dy6FeSb2 and Dy6FeSbTe) close to other rare earth based high entropy alloys described in literature. The seven compounds present a relevant third MCE, inverse, below 25 K, with a value as high as 17.8 J/kgK (140 Delta H = 5 T) for Dy6FeSbTe. The maximum of the magnetic entropy change at the Curie tem-perature has been shown to scale with the critical exponents found and universal curves have been built. Finally, the thermal diffusivities in the range of the DMCE have been measured, with the result that they present good values (between 1 and 3 mm2/s) to be used in real magnetocaloric refrigeration systems.This work has been supported by Universidad del Pais Vasco UPV/EHU (project GIU19/058) and the Russian Fund for Basic Research (project No 20-03-00209-a). A. Herrero thanks the Department of Education of the Basque Government as grantee of the programme "Programa Predoctoral de Formacion de Personal Investigador No Doctor". The authors thank for technical and human support provided by SGIker of UPV/EHU, specially the fruitful discussions with Dr. I. Orue

    Selecting optimal R6TX2 intermetallics (R = Gd, Tb, Dy; T = Mn, Fe, Co, Ni; X = Sb, Te) for magnetic refrigeration

    Get PDF
    A complete experimental study of the physical properties playing a relevant role on magnetic refrigeration application (structural, magnetic, magnetocaloric and thermal) has been performed over nine selected Fe2P-type R6TX2 (R= Gd, Tb, Dy; T= Mn, Fe, Co, Ni; X=Sb, Te) intermetallic compounds, to work close to room temperature. Two magnetic phase transitions are present on these materials: a paramagnetic to ferromagnetic transition in the range 182-282 K and a spin reorientation transition in the range 26-76 K. As a consequence, two peaks related to a direct magnetocaloric effect (DMCE) appear in the magnetic entropy change, generating a wide table-like plateau region in between both peaks, which is required to improve the efficiency of refrigerators following an Ericsson cycle. The highest magnetic entropy peak value for μ0ΔH = 5 T is found for Tb2Dy4FeSb2, with 7.72 J/kg K around 182 K. For the same applied field the other compounds show moderate values around room temperature (2.88-4.53 J/Kg K). However, the superposition of the two peaks results in huge refrigerant capacity values, up to RCFWHM(5 T)=1103.04 J/kg in the case of Tb2Dy4FeSb2. The thermal diffusivity, effusivity conductivity and specific heat have been measured at room temperature, and the temperature dependence of the former has been obtained around the relevant magnetic phase transition region, with values in the range 1.3-2.3 mm2/s, which are good for magnetic refrigerators under high working frequencies. The study is completed with a rigorous critical behavior analisis of the second order PM-FM transition. The critical exponent γ points to long range order interactions, in general, while β values are in the range (0.59-0.90), indicating a deviation from theoretical models as a reflection of the magnetic complexity in these compounds. The critical exponents have been used to confirm the scaling relations of magnetocaloric properties, and the scaling of refrigerant capacity (RC) values in materials presenting two magnetic phase transitions is addressed, concluding that for a correct scaling of RC the magnetic entropy change peak must be considered symmetric. The role of each atom on the properties of the compounds is discussed.This work was supported by Departamento de Educación del Gobierno Vasco (project IT1430-22) and the Russian Fund for Basic Research through the project no. 20-03-00209-a, as well as by an ICDD (International Centre for Diffraction Data) (USA) grant n 05-07

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Study of the BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1MeV,m(Ξc(2939)0)=2938.5±0.9±2.3MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0Λc+K\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7σ3.7\,\sigma. The relative branching fraction of BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the BD+DKB^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages

    Measurement of the ratios of branching fractions R(D)\mathcal{R}(D^{*}) and R(D0)\mathcal{R}(D^{0})

    Full text link
    The ratios of branching fractions R(D)B(BˉDτνˉτ)/B(BˉDμνˉμ)\mathcal{R}(D^{*})\equiv\mathcal{B}(\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}\to D^{*}\mu^{-}\bar{\nu}_{\mu}) and R(D0)B(BD0τνˉτ)/B(BD0μνˉμ)\mathcal{R}(D^{0})\equiv\mathcal{B}(B^{-}\to D^{0}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(B^{-}\to D^{0}\mu^{-}\bar{\nu}_{\mu}) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb1{ }^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τμντνˉμ\tau^{-}\to\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}. The measured values are R(D)=0.281±0.018±0.024\mathcal{R}(D^{*})=0.281\pm0.018\pm0.024 and R(D0)=0.441±0.060±0.066\mathcal{R}(D^{0})=0.441\pm0.060\pm0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ=0.43\rho=-0.43. Results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb public pages

    Search for the Bs0μ+μγB_s^0 \rightarrow \mu^+\mu^-\gamma decay

    No full text
    International audienceA search for the fully reconstructed Bs0μ+μγB_s^0 \rightarrow \mu^+\mu^-\gamma decay is performed at the LHCb experiment using proton-proton collisions at s=13\sqrt{s}=13 TeV corresponding to an integrated luminosity of 5.4fb15.4\,\mathrm{fb^{-1}}. No significant signal is found and upper limits on the branching fraction in intervals of the dimuon mass are set \begin{align} {\cal B}(B_s^0 \rightarrow \mu^+\mu^-\gamma) < 4.2\times10^{-8},~&m(\mu\mu)\in[2m_\mu,~1.70]\,\mathrm{GeV/c^2} ,\nonumber {\cal B}(B_s^0 \rightarrow \mu^+\mu^-\gamma) < 7.7\times10^{-8},~&m(\mu\mu)\in[1.70,~2.88]\,\mathrm{GeV/c^2},\nonumber {\cal B}(B_s^0 \rightarrow \mu^+\mu^-\gamma) < 4.2\times10^{-8},~&m(\mu\mu)\in[3.92 ,~m_{B_s^0}]\,\mathrm{GeV/c^2},\nonumber \end{align} at 95% confidence level. Additionally, upper limits are set on the branching fraction in the [2mμ, 1.70]GeV/c2[2m_\mu,~1.70]\,\mathrm{GeV/c^2} dimuon mass region excluding the contribution from the intermediate ϕ(1020)\phi(1020) meson, and in the region combining all dimuon-mass intervals

    Transverse polarisation measurement of Λ\Lambda hyperons in ppNe collisions at sNN\sqrt{s_{NN}}=68.4 GeV with the LHCb detector

    No full text
    A measurement of the transverse polarization of the Λ\Lambda and Λˉ\bar{\Lambda}hyperons in ppNe fixed-target collisions at sNN\sqrt{s_{NN}}=68.4 GeV is presented using data collected by the LHCb detector. The polarization is studied using the decay Λpπ\Lambda \rightarrow p \pi^- together with its charge conjugated process, the integrated values measured are PΛ=0.029±0.019(stat)±0.012(syst), P_{\Lambda} = 0.029 \pm 0.019 \, (\rm{stat}) \pm 0.012 \, (\rm{syst}) \, , PΛˉ=0.003±0.023(stat)±0.014(syst) P_{\bar{\Lambda}} = 0.003 \pm 0.023 \, (\rm{stat}) \pm 0.014 \,(\rm{syst}) \, Furthermore, the results are shown as a function of the Feynman xx variable, transverse momentum, pseudorapidity and rapidity of the hyperons, and are compared with previous measurements.A measurement of the transverse polarization of the Λ\Lambda and Λˉ\bar{\Lambda} hyperons in ppNe fixed-target collisions at sNN\sqrt{s_{NN}} = 68.4 GeV is presented using data collected by the LHCb detector. The polarization is studied using the decay Λpπ\Lambda \rightarrow p \pi^- together with its charge conjugated process, the integrated values measured are PΛ=0.029±0.019(stat)±0.012(syst), P_{\Lambda} = 0.029 \pm 0.019 \, (\rm{stat}) \pm 0.012 \, (\rm{syst}) \, , PΛˉ=0.003±0.023(stat)±0.014(syst). P_{\bar{\Lambda}} = 0.003 \pm 0.023 \, (\rm{stat}) \pm 0.014 \,(\rm{syst}) \,. Furthermore, the results are shown as a function of the Feynman~xx~variable, transverse momentum, pseudorapidity and rapidity of the hyperons, and are compared with previous measurements

    Tracking of charged particles with nanosecond lifetimes at LHCb

    No full text
    A method is presented to reconstruct charged particles with lifetimes between 10 ps and 10 ns, which considers a combination of their decay products and the partial tracks created by the initial charged particle. Using the Ξ\Xi^- baryon as a benchmark, the method is demonstrated with simulated events and proton-proton collision data at s=13\sqrt{s}=13 TeV, corresponding to an integrated luminosity of 2.0 fb1{}^{-1} collected with the LHCb detector in 2018. Significant improvements in the angular resolution and the signal purity are obtained. The method is implemented as part of the LHCb Run 3 event trigger in a set of requirements to select detached hyperons. This is the first demonstration of the applicability of this approach at the LHC, and the first to show its scaling with instantaneous luminosity

    Search for the Bs0μ+μγB_s^0 \rightarrow \mu^+\mu^-\gamma decay

    No full text
    International audienceA search for the fully reconstructed Bs0μ+μγB_s^0 \rightarrow \mu^+\mu^-\gamma decay is performed at the LHCb experiment using proton-proton collisions at s=13\sqrt{s}=13 TeV corresponding to an integrated luminosity of 5.4fb15.4\,\mathrm{fb^{-1}}. No significant signal is found and upper limits on the branching fraction in intervals of the dimuon mass are set \begin{align} {\cal B}(B_s^0 \rightarrow \mu^+\mu^-\gamma) < 4.2\times10^{-8},~&m(\mu\mu)\in[2m_\mu,~1.70]\,\mathrm{GeV/c^2} ,\nonumber {\cal B}(B_s^0 \rightarrow \mu^+\mu^-\gamma) < 7.7\times10^{-8},~&m(\mu\mu)\in[1.70,~2.88]\,\mathrm{GeV/c^2},\nonumber {\cal B}(B_s^0 \rightarrow \mu^+\mu^-\gamma) < 4.2\times10^{-8},~&m(\mu\mu)\in[3.92 ,~m_{B_s^0}]\,\mathrm{GeV/c^2},\nonumber \end{align} at 95% confidence level. Additionally, upper limits are set on the branching fraction in the [2mμ, 1.70]GeV/c2[2m_\mu,~1.70]\,\mathrm{GeV/c^2} dimuon mass region excluding the contribution from the intermediate ϕ(1020)\phi(1020) meson, and in the region combining all dimuon-mass intervals

    First observation of Λb0Σc()++D()K\Lambda_{b}^{0} \rightarrow \Sigma_c^{(*)++} D^{(*)-} K^{-} decays

    No full text
    International audienceThe four decays, Λb0Σc()++D()K\Lambda_{b}^{0} \rightarrow \Sigma_c^{(*)++} D^{(*)-} K^{-}, are observed for the first time using proton-proton collision data collected with the LHCb detector at a centre-of-mass energy of 13TeV13\,\rm{TeV}, corresponding to an integrated luminosity of 6fb16\,\rm{fb}^{-1}. By considering the Λb0Λc+D0K\Lambda_b^0 \rightarrow \Lambda_c^{+} \overline{D}^0 K^{-} decay as reference channel, the following branching fraction ratios are measured to be, B(Λb0Σc++DK)B(Λb0Λc+D0K)=0.282±0.016±0.016±0.005,B(Λb0Σc++DK)B(Λb0Σc++DK)=0.460±0.052±0.028,B(Λb0Σc++DK)B(Λb0Σc++DK)=2.261±0.202±0.129±0.046,B(Λb0Σc++DK)B(Λb0Σc++DK)=0.896±0.137±0.066±0.018,\frac{\cal{B} (\Lambda_{b}^{0} \rightarrow \Sigma_{c}^{++} \rm{D}^{-} {K}^{-})}{\cal{B}(\Lambda_{b}^{0} \rightarrow \Lambda_c^{+} \rm \overline{D}^0 {K}^{-})} = {0.282}\pm{0.016}\pm{0.016}\pm{0.005}, \frac{\cal{B}(\Lambda_{b}^{0} \rightarrow \Sigma_{c}^{*++} \rm {D}^{-} {K}^{-})}{\cal{B}(\Lambda_{b}^{0} \rightarrow \Sigma_c^{++} \rm {D}^{-} {K}^{-})} = {0.460}\pm{0.052}\pm{0.028}, \frac{\cal{B}(\Lambda_{b}^{0} \rightarrow \Sigma_{c}^{++} \rm {D}^{*-} {K}^{-})}{\cal{B}(\Lambda_{b}^{0} \rightarrow \Sigma_c^{++} \rm {D}^{-} {K}^{-})} = {2.261}\pm{0.202}\pm{0.129}\pm{0.046}, \frac{\cal{B}(\Lambda_{b}^{0} \rightarrow \Sigma_{c}^{*++} \rm D^{*-} K^{-})}{\cal{B}(\Lambda_{b}^{0} \rightarrow \Sigma_c^{++} \rm D^{-} K^{-})} = {0.896}\pm{0.137}\pm{0.066}\pm{0.018}, where the first uncertainties are statistical, the second are systematic, and the third are due to uncertainties in the branching fractions of intermediate particle decays. These initial observations mark the beginning of pentaquark searches in these modes, with more data set to become available following the LHCb upgrade
    corecore