635 research outputs found

    Limits on the gravity wave contribution to microwave anisotropies

    Get PDF
    We present limits on the fraction of large angle microwave anisotropies which could come from tensor perturbations. We use the COBE results as well as smaller scale CMB observations, measurements of galaxy correlations, abundances of galaxy clusters, and Lyman alpha absorption cloud statistics. Our aim is to provide conservative limits on the tensor-to-scalar ratio for standard inflationary models. For power-law inflation, for example, we find T/S<0.52 at 95% confidence, with a similar constraint for phi^p potentials. However, for models with tensor amplitude unrelated to the scalar spectral index it is still currently possible to have T/S>1.Comment: 23 pages, 7 figures, accepted for publication in Phys. Rev. D. Calculations extended to blue spectral index, Fig. 6 added, discussion of results expande

    Inflationary models inducing non-Gaussian metric fluctuations

    Get PDF
    We construct explicit models of multi-field inflation in which the primordial metric fluctuations do not necessarily obey Gaussian statistics. These models are realizations of mechanisms in which non-Gaussianity is first generated by a light scalar field and then transferred into curvature fluctuations. The probability distribution functions of the metric perturbation at the end of inflation are computed. This provides a guideline for designing strategies to search for non-Gaussian signals in future CMB and large scale structure surveys.Comment: 4 pages, 7 figure

    Inflation with Ω≠1\Omega \not = 1

    Full text link
    We discuss various models of inflationary universe with Ω≠1\Omega \not = 1. A homogeneous universe with Ω>1\Omega > 1 may appear due to creation of the universe "from nothing" in the theories where the effective potential becomes very steep at large ϕ\phi, or in the theories where the inflaton field ϕ\phi nonminimally couples to gravity. Inflation with Ω<1\Omega < 1 generally requires intermediate first order phase transition with the bubble formation, and with a second stage of inflation inside the bubble. It is possible to realize this scenario in the context of a theory of one scalar field, but typically it requires artificially bent effective potentials and/or nonminimal kinetic terms. It is much easier to obtain an open universe in the models involving two scalar fields. However, these models have their own specific problems. We propose three different models of this type which can describe an open homogeneous inflationary universe.Comment: 29 pages, LaTeX, parameters of one of the models are slightly modifie

    Inflation from Susy quantum cosmology

    Full text link
    We propose a realization of inverted hybrid inflation scenario in the context of n=2 supersymmetric quantum cosmology. The spectrum of density fluctuations is calculated in the de Sitter regimen as a function of the gravitino and the Planck mass, and explicit forms for the wave function of the universe are found in the WKB regimen for a FRW closed and flat universes.Comment: 9 pages, one figure, to appear in Phys. Rev.

    Controlling collapse in Bose-Einstein condensates by temporal modulation of the scattering length

    Full text link
    We consider, by means of the variational approximation (VA) and direct numerical simulations of the Gross-Pitaevskii (GP) equation, the dynamics of 2D and 3D condensates with a scattering length containing constant and harmonically varying parts, which can be achieved with an ac magnetic field tuned to the Feshbach resonance. For a rapid time modulation, we develop an approach based on the direct averaging of the GP equation,without using the VA. In the 2D case, both VA and direct simulations, as well as the averaging method, reveal the existence of stable self-confined condensates without an external trap, in agreement with qualitatively similar results recently reported for spatial solitons in nonlinear optics. In the 3D case, the VA again predicts the existence of a stable self-confined condensate without a trap. In this case, direct simulations demonstrate that the stability is limited in time, eventually switching into collapse, even though the constant part of the scattering length is positive (but not too large). Thus a spatially uniform ac magnetic field, resonantly tuned to control the scattering length, may play the role of an effective trap confining the condensate, and sometimes causing its collapse.Comment: 7 figure

    Conditions for Successful Extended Inflation

    Full text link
    We investigate, in a model-independent way, the conditions required to obtain a satisfactory model of extended inflation in which inflation is brought to an end by a first-order phase transition. The constraints are that the correct present strength of the gravitational coupling is obtained, that the present theory of gravity is satisfactorily close to general relativity, that the perturbation spectra from inflation are compatible with large scale structure observations and that the bubble spectrum produced at the phase transition doesn't conflict with the observed level of microwave background anisotropies. We demonstrate that these constraints can be summarized in terms of the behaviour in the conformally related Einstein frame, and can be compactly illustrated graphically. We confirm the failure of existing models including the original extended inflation model, and construct models, albeit rather contrived ones, which satisfy all existing constraints.Comment: 8 pages RevTeX file with one figure incorporated (uses RevTeX and epsf). Also available by e-mailing ARL, or by WWW at http://star-www.maps.susx.ac.uk/papers/infcos_papers.html; Revised to include extra references, results unchanged, to appear Phys Rev

    Resonant x-ray diffraction study of the magnetoresistant perovskite Pr0.6Ca0.4MnO3

    Full text link
    We report a x-ray resonant diffraction study of the perovskite Pr0.6Ca0.4MnO3. At the Mn K-edge, this technique is sensitive to details of the electronic structure of the Mn atoms. We discuss the resonant x-ray spectra measured above and below the charge and orbital ordering phase transition temperature (TCOO = 232 K), and present a detailed analysis of the energy and polarization dependence of the resonant scattering. The analysis confirms that the structural transition is a transition to an orbitally ordered phase in which inequivalent Mn atoms are ordered in a CE-type pattern. The Mn atoms differ mostly by their 3d orbital occupation. We find that the charge disproportionation is incomplete, 3d^{3.5-\delta} and 3d^{3.5+\delta} with \delta\ll0.5 . A revised CE-type model is considered in which there are two Mn sublattices, each with partial e_{g} occupancy. One sublattice consists of Mn atoms with the 3x^{2}-r^{2} or 3y^{2}-r^{2} orbitals partially occupied, the other sublattice with the x^{2}-y^{2} orbital partially occupied.Comment: 15 pages, 15 figure

    Large-scale curvature and entropy perturbations for multiple interacting fluids

    Get PDF
    We present a gauge-invariant formalism to study the evolution of curvature perturbations in a Friedmann-Robertson-Walker universe filled by multiple interacting fluids. We resolve arbitrary perturbations into adiabatic and entropy components and derive their coupled evolution equations. We demonstrate that perturbations obeying a generalised adiabatic condition remain adiabatic in the large-scale limit, even when one includes energy transfer between fluids. As a specific application we study the recently proposed curvaton model, in which the curvaton decays into radiation. We use the coupled evolution equations to show how an initial isocurvature perturbation in the curvaton gives rise to an adiabatic curvature perturbation after the curvaton decays.Comment: 14 pages, latex with revtex, 5 figures; v2 typos corrected; v3 typos corrected, version to appear in Phys. Rev.

    Extreme scenarios: the tightest possible constraints on the power spectrum due to primordial black holes

    Get PDF
    Observational constraints on the abundance of primordial black holes (PBHs) constrain the allowed amplitude of the primordial power spectrum on both the smallest and the largest ranges of scales, covering over 20 decades from 1 - 10^20=Mpc. Despite tight constraints on the allowed fraction of PBHs at their time of formation near horizon entry in the early Universe, the corresponding constraints on the primordial power spectrum are quite weak, typically PR . 10<~2 assuming Gaussian perturbations. Motivated by recent claims that the evaporation of just one PBH would destabilise the Higgs vacuum and collapse the Universe, we calculate the constraints which follow from assuming there are zero PBHs within the observable Universe. Even if evaporating PBHs do not collapse the Universe, this scenario represents the ultimate limit of observational constraints. Constraints can be extended on to smaller scales right down to the horizon scale at the end of in ation, but where power spectrum constraints already exist they do not tighten significantly, even though the constraint on PBH abundance can decrease by up to 46 orders of magnitude. This shows that no future improvement in observational constraints can ever lead to a significant tightening in constraints on in ation (via the power spectrum amplitude). The power spectrum constraints are weak because an order unity perturbation is required in order to overcome pressure forces. We therefore consider an early matter dominated era, during which exponentially more PBHs form for the same initial conditions. We show this leads to far tighter constraints, which approach PR . 10^-9, albeit over a smaller range of scales and are very sensitive to when the early matter dominated era ends. Finally, we show that an extended early matter era is incompatible with the argument that an evaporating PBH would destroy the Universe, unless the power spectrum amplitude decreases by up to ten orders of magnitude

    The Role of Power-Law Correlated Disorder in the Anderson Metal-Insulator Transition

    Full text link
    We study the influence of scale-free correlated disorder on the metal-insulator transition in the Anderson model of localization. We use standard transfer matrix calculations and perform finite-size scaling of the largest inverse Lyapunov exponent to obtain the localization length for respective 3D tight-binding systems. The density of states is obtained from the full spectrum of eigenenergies of the Anderson Hamiltonian. We discuss the phase diagram of the metal-insulator transition and the influence of the correlated disorder on the critical exponents.Comment: 6 pages, 3 figure
    • …
    corecore