404 research outputs found

    Nature of Sonoluminescence: Noble Gas Radiation Excited by Hot Electrons in "Cold" Water

    Get PDF
    We show that strong electric fields occurring in water near the surface of collapsing gas bubbles because of the flexoelectric effect can provoke dynamic electric breakdown in a micron-size region near the bubble and consider the scenario of the SBSL. The scenario is: (i) at the last stage of incomplete collapse of the bubble the gradient of pressure in water near the bubble surface has such a value and sign that the electric field arising from the flexoelectric effect exceeds the threshold field of the dynamic electrical breakdown of water and is directed to the bubble center; (ii) mobile electrons are generated because of thermal ionization of water molecules near the bubble surface; (iii) these electrons are accelerated in ''cold'' water by the strong electric fields; (iv) these hot electrons transfer noble gas atoms dissolved in water to high-energy excited states and optical transitions between these states produce SBSL UV flashes in the trasparency window of water; (v) the breakdown can be repeated several times and the power and duration of the UV flash are determined by the multiplicity of the breakdowns. The SBSL spectrum is found to resemble a black-body spectrum where temperature is given by the effective temperature of the hot electrons. The pulse energy and some other characteristics of the SBSL are found to be in agreement with the experimental data when realistic estimations are made.Comment: 11 pages (RevTex), 1 figure (.ps

    Split vortices in optically coupled Bose-Einstein condensates

    Full text link
    We study a rotating two-component Bose-Einstein condensate in which an optically induced Josephson coupling allows for population transfer between the two species. In a regime where separation of species is favored, the ground state of the rotating system displays domain walls with velocity fields normal to them. Such a configuration looks like a vortex split into two halves, with atoms circulating around the vortex and changing their internal state in a continuous way.Comment: 4 EPS pictures, 4 pages; Some errata have been corrected and thep resentation has been slightly revise

    An optimal day-ahead load scheduling approach based on the flexibility of aggregate demands

    Get PDF
    The increasing trends of energy demand and renewable integration call for new and advanced approaches to energy management and energy balancing in power networks. Utilities and network system operators require more assistance and flexibility shown from consumers in order to manage their power plants and network resources. Demand response techniques allow customers to participate and contribute to the system balancing and improve power quality. Traditionally, only energy-intensive industrial users and large customers actively participated in demand response programs by intentionally modifying their consumption patterns. In contrast, small consumers were not considered in these programs due to their low individual impact on power networks, grid infrastructure and energy balancing. This paper studies the flexibility of aggregated demands of buildings with different characteristics such as shopping malls, offices, hotels and dwellings. By using the aggregated demand profile and the market price predictions, an aggregator participates directly in the day-ahead market to determine the load scheduling that maximizes its economic benefits. The optimization problem takes into account constraints on the demand imposed by the individual customers related to the building occupant comfort. A case study representing a small geographic area was used to assess the performance of the proposed method. The obtained results emphasize the potential of demand aggregation of different customers in order to increase flexibility and, consequently, aggregator profits in the day-ahead market.The authors kindly acknowledge the support of the Spanish Ministry of Economy and Competitiveness project RESmart (ENE2013-48690-C2-2-R)

    Generating vortex rings in Bose-Einstein condensates in the line-source approximation

    Get PDF
    We present a numerical method for generating vortex rings in Bose-Einstein condensates confined in axially symmetric traps. The vortex ring is generated using the line-source approximation for the vorticity, i.e., the rotational of the superfluid velocity field is different from zero only on a circumference of given radius located on a plane perpendicular to the symmetry axis and coaxial with it. The particle density is obtained by solving a modified Gross-Pitaevskii equation that incorporates the effect of the velocity field. We discuss the appearance of density profiles, the vortex core structure and the vortex nucleation energy, i.e., the energy difference between vortical and ground-state configurations. This is used to present a qualitative description of the vortex dynamics.Comment: Accepted for publication in Phys. Rev.

    On S-duality in (2+1)-Chern-Simons Supergravity

    Get PDF
    Strong/weak coupling duality in Chern-Simons supergravity is studied. It is argued that this duality can be regarded as an example of superduality. The use of supergroup techniques for the description of Chern-Simons supergravity greatly facilitates the analysis.Comment: 10+1 pages, latex, no figure

    Numerical simulations of a non-commutative theory: the scalar model on the fuzzy sphere

    Get PDF
    We address a detailed non-perturbative numerical study of the scalar theory on the fuzzy sphere. We use a novel algorithm which strongly reduces the correlation problems in the matrix update process, and allows the investigation of different regimes of the model in a precise and reliable way. We study the modes associated to different momenta and the role they play in the ``striped phase'', pointing out a consistent interpretation which is corroborated by our data, and which sheds further light on the results obtained in some previous works. Next, we test a quantitative, non-trivial theoretical prediction for this model, which has been formulated in the literature: The existence of an eigenvalue sector characterised by a precise probability density, and the emergence of the phase transition associated with the opening of a gap around the origin in the eigenvalue distribution. The theoretical predictions are confirmed by our numerical results. Finally, we propose a possible method to detect numerically the non-commutative anomaly predicted in a one-loop perturbative analysis of the model, which is expected to induce a distortion of the dispersion relation on the fuzzy sphere.Comment: 1+36 pages, 18 figures; v2: 1+55 pages, 38 figures: added the study of the eigenvalue distribution, added figures, tables and references, typos corrected; v3: 1+20 pages, 10 eps figures, new results, plots and references added, technical details about the tests at small matrix size skipped, version published in JHE

    Non-Abelian Vortices, Super-Yang-Mills Theory and Spin(7)-Instantons

    Full text link
    We consider a complex vector bundle E endowed with a connection A over the eight-dimensional manifold R^2 x G/H, where G/H = SU(3)/U(1)xU(1) is a homogeneous space provided with a never integrable almost complex structure and a family of SU(3)-structures. We establish an equivalence between G-invariant solutions A of the Spin(7)-instanton equations on R^2 x G/H and general solutions of non-Abelian coupled vortex equations on R^2. These vortices are BPS solitons in a d=4 gauge theory obtained from N=1 supersymmetric Yang-Mills theory in ten dimensions compactified on the coset space G/H with an SU(3)-structure. The novelty of the obtained vortex equations lies in the fact that Higgs fields, defining morphisms of vector bundles over R^2, are not holomorphic in the generic case. Finally, we introduce BPS vortex equations in N=4 super Yang-Mills theory and show that they have the same feature.Comment: 14 pages; v2: typos fixed, published versio

    Stability of dark solitons in a Bose-Einstein condensate trapped in an optical lattice

    Get PDF
    We investigate the stability of dark solitons (DSs) in an effectively one-dimensional Bose-Einstein condensate in the presence of the magnetic parabolic trap and an optical lattice (OL). The analysis is based on both the full Gross-Pitaevskii equation and its tight-binding approximation counterpart (discrete nonlinear Schr{\"o}dinger equation). We find that DSs are subject to weak instabilities with an onset of instability mainly governed by the period and amplitude of the OL. The instability, if present, sets in at large times and it is characterized by quasi-periodic oscillations of the DS about the minimum of the parabolic trap.Comment: Typo fixed in Eq. (1): cos^2 -> sin^

    On the construction of a geometric invariant measuring the deviation from Kerr data

    Full text link
    This article contains a detailed and rigorous proof of the construction of a geometric invariant for initial data sets for the Einstein vacuum field equations. This geometric invariant vanishes if and only if the initial data set corresponds to data for the Kerr spacetime, and thus, it characterises this type of data. The construction presented is valid for boosted and non-boosted initial data sets which are, in a sense, asymptotically Schwarzschildean. As a preliminary step to the construction of the geometric invariant, an analysis of a characterisation of the Kerr spacetime in terms of Killing spinors is carried out. A space spinor split of the (spacetime) Killing spinor equation is performed, to obtain a set of three conditions ensuring the existence of a Killing spinor of the development of the initial data set. In order to construct the geometric invariant, we introduce the notion of approximate Killing spinors. These spinors are symmetric valence 2 spinors intrinsic to the initial hypersurface and satisfy a certain second order elliptic equation ---the approximate Killing spinor equation. This equation arises as the Euler-Lagrange equation of a non-negative integral functional. This functional constitutes part of our geometric invariant ---however, the whole functional does not come from a variational principle. The asymptotic behaviour of solutions to the approximate Killing spinor equation is studied and an existence theorem is presented.Comment: 36 pages. Updated references. Technical details correcte

    Dynamic splitting of a Bose-Einstein Condensate

    Full text link
    We study the dynamic process of splitting a condensate by raising a potential barrier in the center of a harmonic trap. We use a two-mode model to describe the phase coherence between the two halves of the condensate. Furthermore, we explicitly consider the spatial dependence of the mode funtions, which varies depending on the potential barrier. This allows to get the tunneling coupling between the two wells and the on-site energy as a function of the barrier height. Moreover we can get some insight on the collective modes which are excited by raising the barrier. We describe the internal and external degrees of freedom by variational ansatz. We distinguish the possible regimes as a function of the characteristic parameters of the problem and identify the adiabaticity conditions.Comment: 17 pages, 8 figure
    corecore